الإختبار الأول للفصل الأول

هندسة الطرائق


القسم : سنة ثانية تقني رياضي المدة : ساعتان

الأستاذ: موالدي

أَبدأُ باسم اللهِ مُستعينًا للصِ به مُدبرًا مُعِينًا

التمرين الأول (5 نقاط)

ثنائي اليود هو مركب كيميائي صيغته I_2 له خواص مطهرة، هذا المركب يتواجد في محلول يباع في الصيدليات تحت اسم بيتاديين وهو محلول بني متجانس . من خلال هذا العمل نريد فصل مركب ثنائي اليود عن البيتاديين باستعمال مذيب مناسب .

- ب. اذكر أهم صفات المذيب المناسب الذي سنقوم باختياره للقيام بهذه العملية ؟
- ج. من بين الثلاث المذيبات المقترحة في الجدول المرفق، اختر المذيب المناسب لهذه العملية ؟ مع التبرير .

المذيب	ثنائ <i>ي</i> کلورو میثان CH ₂ Cl ₂	الإيثانول C ₂ H ₆ O	حلقي هكسان C_6H_{12}
الإنحلالية في الماء	متوسطة	جيدة	منعدمة
الإنحلالية في ثنائي اليود	كبيرة	متوسطة	كبيرة
D الكثافة	1,33	0,78	0,79

- د. ماهو اسم الأداة الزجاجية المختارة من أجل القيام بهذه العملية ؟
- ه. ارسم البروتوكول التجريبي لهذه العملية مع توضيح في أيّ طور يتواجد مركب ثنائي اليود .

التمرين الثاني (8 نقاط)

من أجل إيجاد التركيز الكتلي لثنائي اليود المتواجد في قارورة محلول تجاري للبيتاديين مكتوب عليها 10% ، نقترح الخطوات التالية :

- المحلول التجاري للبيتادين مركز جدا ومن أجل القيام بمعايرته نقوم بتخفيفه عشر مرات (F = 10) .
- نقوم بمعايرة حجم V=10~mL من ثنائي اليود I_2 (الموجود في المحلول المخفف السابق للبيتادين) بواسطة شوارد ثيوكبريتات $S_2O_3^{2-}$ (الموجودة في محلول ثيوكبريتات الصوديوم $S_2O_3^{2-}$) نظاميتها $S_2O_3^{2-}$ ، فكان حجم شوارد ثيوكبريتات عند نقطة التكافؤ Veq=8.1~mL في وجود كاشف صمغ النشاء .

$$S_4O_6^{2-}$$
د الثنائيات الداخلة في التفاعل $S_2O_3^{2-}$ ن : $S_4O_6^{2-}$: $S_2O_3^{2-}$: $S_2O_3^{2-}$: $S_2O_3^{2-}$ الثنائيات الداخلة في التفاعل $S_2O_3^{2-}$: $S_2O_3^{2-}$ الثنائيات الداخلة في التفاعل $S_2O_3^{2-}$

الأسئلة:

- . $\underline{S}_4{O_6}^{2}$ ، $\underline{S}_2{O_3}^{2}$ ، $\underline{\Gamma}$ ، \underline{I}_2 : خصب رقم الأكسدة للعناصر التي تحتها خط الميام (1
- 2) ماهو نوع التفاعل الذي يقوم به ثنائي اليود ؟ وماهو نوع التفاعل التي تقوم به شوارد ثيوكبريتات ؟
 - 3) بين أن المعادلة الإجمالية للأكسدة الإرجاعية هي:

$$I_2 + 2S_2O_3^{2-} \longrightarrow 2I^- + S_4O_6^{2-}$$

- 4) عند نقطة التكافؤ: احسب قيمة نظامية ثنائي اليود ثم استنتج قيمة التركيز المولي لثنائي اليود الموجود في المحلول المخفف.
 - 5) جد قيمة التركيز المولي لثنائي اليود الموجود في المحلول التجاري الأصلي .
 - 6) جد قيمة التركيز الكتلي لثنائي اليود الموجود في المحلول التجاري للبيتادين .

 $M = 254 \frac{g}{Mol}$: الكتلة المولية لثنائي اليود :

التمرين الثالث (7 نقاط)

حمض الأسكوربيك Acide Ascorbique ومعروف باسمه التجاري : فيتامين Vitamine C) C ومعروف باسمه التجاري : فيتامين Reide Ascorbique) هو عبارة عن مضاد للأكسدة يتواجد في كثير من الفواكه و الخضر .

- في الصيدلة يوجد حمض الأسكوربيك على شكل أقراص فيتامين 500 C ،
 كل قرص يحتوي على mg من حمض الأسكوربيك .
 - صيغة حمض الأسكوربيك العامة $\mathbf{C}_6\mathbf{H}_8\mathbf{O}_6$ وهو حمض أحادي الوظيفة ، ثنائيته حمض أساس هي $\binom{C_6H_8O_6}{C_cH_7O_c^-}$

الهدف من التمرين هو التأكد من كتلة حمض الأسكوربيك الموجودة في قرص واحد من الفيتامين C .

❖ نقوم بإذابة قرص فيتامين C في الماء المقطر حتى نتحصل على حجم 100 مل من المحلول S .

2as.ency-education.com

نقوم بأخذ حجم 10 مل من المحلول S المحضر في الخطوة السابقة ونعايره بمحلول هيدروكسيد الصوديوم نظاميته ($V_{Béq} = 13.8 \; mL$) فكان حجم هيدروكسيد الصوديوم عند التكافؤ : $V_{Béq} = 13.8 \; mL$.

الأسئلة

- 1. ارسم البروتوكول التجريبي لعملية المعايرة السابقة .
 - 2. أكتب معادلة تفاعل المعايرة الحادث.
- 3. برر لماذا تفاعل المعايرة هو تفاعل حمض أساس ؟
- 4. عند نقطة التكافق: احسب نظامية حمض الأسكوربيك ثم استنتج تركيزه المولى.
- . m=0.486 g هي S بين أن كتلة حمض الأسكوربيك الموجودة في المحلول $M=176\frac{g}{Mol}$ هي $M=176\frac{g}{Mol}$ معطيات : الكتلة المولية لحمض الأسكوربيك هي المحلول على المحلول المحلو
- 6. قارن بين قيمة كتلة حمض الأسكوربيك المحسوبة في السؤال 5 وبين قيمة كتلة حمض الأسكوربيك الموجودة على غلاف علبة دواء فيتامين C .

إذا اختلفت القيمتان اقترح سببان لهذا الخطأ .

بالتوفيق إن شاء الله....

- الإستعانة بالله في صلاح القلب..
- ●قال شيخ الإسلام ابن تيمية -رحمه الله: -
- ■((يَجِبُ عَلَى الْمُؤْمِنِ أَنْ يَسْتَعِينَ بِاللّهِ ؛ وَيَتَوَكَّلَ عَلَيْهِ فِي أَنْ يُقِيمَ قَلْبَهُ وَلَا يُزِيغَهُ : وَيُثَبِّبَهُ عَلَى الْهُدَىٰ وَالتَّقْوَىٰ ؛ وَلَا يَتَبِعُ الْهُوَىٰ كَمَا قَالَ تَعَالَىٰ : {{ فَلِذَلِكَ فَادْعُ وَاسْتَقِمْ كَمَا أُمِرْتَ وَلَا تَتَبِعْ أَهْوَاءَ هُمْ وَقُلْ آمَنْتُ بِمَا أَنْزَلَ اللّهُ مِنْ كِتَابٍ وَأُمِرْتُ لِأَعْدِلَ بَيْنَكُمُ اللّهُ رَبّنَا وَرَبُكُمْ {{.)}

__ • • • • __

[[مجموع الفتاوى (٩٤ ٢٨/١)]].