التسرين الأول :

.
$$g(x) = x^3 - 3x^2 + 4$$
: الدالة العددية المعرفة على \mathbb{R} كما يلي g

.
$$\left(O\,; \vec{i}\,, \vec{j}\,\right)$$
تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس و المستوي المنسوب إلى المعلم المتعامد والمتجانس و

.
$$\lim_{x \to \infty} g(x)$$
 و $\lim_{x \to \infty} g(x)$ أحسب (1)

2) أدرس اتجاه تغير الدالة
$$g$$
، ثم شكل جدول تغيراتها .

$$.(C_{g})$$
 مركز تناظر للمنحنى $\omega(1;2)$ مركز مركز 3

.
$$\omega$$
 النقطة (C_{g}) عند النقطة (4) المنحنى (4)

. أحسب
$$\left(C_{g}\right)$$
 مع حامل محور الفواصل فقط تقاطع والما محور الفواصل . $g\left(-1\right)$

$$(T)$$
 أنشئ المنحنى (C_g) و المستقيم ((T)

التسرين الثاني:

$$f(x) = \frac{x+1}{x-1}$$
 : الدالة العددية المعرَفة على $\mathbb{R} - \{1\}$ كما يلي f

.
$$\left(O\,; \vec{i}\,, \vec{j}\,
ight)$$
 مثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس و المستوي المنسوب إلى المعلم المتعامد والمتجانس و المستوي المست

$$f(x) = 1 + \frac{2}{x-1} : \mathbb{R} - \{1\}$$
من (1 من أجل كل من أجل كل من أجل 1 من أجل عن أجل

$$\lim_{x \to -\infty} f(x)$$
 و $\lim_{x \to +\infty} f(x)$ الـ أحسب (2

بـ أحسب
$$\lim_{x \to 1} f(x)$$
 و $\lim_{x \to 1} f(x)$ ، ثم فستر النتيجة هندسيا .

. أدرس إتجاه تغير الدالة
$$f$$
 ، ثم شكل جدول تغيراتها (3

. (الفواصل ، التراتيب) مع محوري الإحداثيات (الفواصل ، التراتيب) .
$$(C_f)$$

$$.(C_f)$$
 بين أن النقطة $\Omega(1;1)$ هي مركز تناظر للمنحنى (5

. 2 عند النقطة ذات الفاصلة (
$$C_f$$
) للمنحنى (Δ) عند النقطة ذات الفاصلة (6

$$(\Delta)$$
 بين أنه يوجد مماس آخر (Δ') للمنحنى (C_f) يوازي المستقيم

$$(\Delta)$$
 أنشئ المنحنى (C_f) و المستقيم (7

التسرين الثالث:

$$f\left(x\right) = \frac{4x}{x^2 + 1} : \mathbb{R}$$
 نعتبر الدالة f المعرَفة على

.
$$\left(O; \overrightarrow{i}, \overrightarrow{j}\right)$$
تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_{f}\right)$

- . بين أن الدالة f فردية (1
- أحسب $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ ، فسر النتائج هندسيا.
 - . أدرس إتجاه تغير الدالة f ، ثم شكل جدول تغيراتها (3
- .0 أكتب معادلة المماس (Δ) للمنحنى (C_f) عند النقطة ذات الفاصلة (4
 - . (Δ) والمستقيم (C_f) أنشئ المنحنى (Δ

الدالة المعرّفة على
$$\mathbb{R}$$
 ب $=$ ب $=$ ب $=$ ب $=$ الدالة المعرّفة على \mathbb{R} بالدالة المعرّفة على \mathbb{R} بالدالة المعرّفة على المالة المعرّفة على المالة المعرّفة على المالة المالة المالة المالة المالة على المالة على المالة على المناحثي (C_f) باعتمادا على المنحثي (C_f) باعتمادا على المنحثي المالة الما

التسرين الرابع

$$f\left(x\right)=rac{x^{2}+x+4}{x+1}:$$
الدالة العددية المعرَفة على $\mathbb{R}-\left\{ -1
ight\}$ ب

.
$$\left(O\,; \vec{i}\,, \vec{j}\,
ight)$$
تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس و $\left(C_f\,
ight)$

$$\lim_{x \to -\infty} f(x)$$
 و $\lim_{x \to +\infty} f(x)$ الـ أحسب (1)

بـ أحسب
$$\lim_{x \to -1} f(x)$$
 و $\lim_{x \to -1} f(x)$ ، ثم فسر النتيجة هندسيا .

$$f(x) = ax + \frac{b}{x+1} : \mathbb{R} - \{-1\}$$
 مين العددين a و a بحيث يكون من أجل كل a من (2

.
$$(C_f)$$
 أـبين أن المستقيم (Δ) ذا المعادلة $y=x$ مستقيم مقارب مائل للمنحنى (3

$$\cdot$$
 . (Δ) بالنسبة للمستقيم بادرس وضعية المنحنى المستقيم بادرس

.
$$f'(x) = \frac{(x-1)(x+3)}{(x+1)^2}$$
 : فإن $\mathbb{R} - \{-1\}$ من $(4-1)^2$

.
$$f'(x)$$
 بـ أدرس إشارة $f'(x)$ ، ثم شكل جدول تغيرات الدالة

.
$$0$$
 الماس (T) للمنحنى (C_f) عند النقطة ذات الفاصلة (5

.
$$(C_f)$$
 بين أن النقطة $\Omega(-1;-1)$ هي مركز تناظر للمنحنى (6

$$(C_f)$$
 و (T) ، (Δ) : انشئ ڪلا من

وسيط حقيقي . عين بيانيا قيم
$$m$$
 حتى يكون للمعادلة $f(x) = m$ حلان مختلفان . m

التسرين الحامس:

$$g\left(x\right)=rac{x^3-5x^2+4}{x^2}:$$
 الدالة العددية المعرفة على \mathbb{R}^* ب

.
$$\left(O\,; \stackrel{\rightarrow}{i}\,, \stackrel{\rightarrow}{j}\right)$$
تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_{g}\right)$

. عين أنه من أجل كل
$$x$$
 من \mathbb{R}^* فإن $x = x - 5 + \frac{a}{x^2}$ فإن \mathbb{R}^* فإن والمحتوية والمحتودة وال

.
$$\lim_{x \to +\infty} g(x)$$
 و $\lim_{x \to -\infty} g(x)$ أـأحسب (2

. انسب النتيجة هندسيا ،
$$\lim_{x \to 0} g(x)$$
 فسر النتيجة هندسيا

.
$$g'(x) = \frac{(x-2)(x^2+2x+4)}{x^3}$$
: فإن \mathbb{R}^* فإن x من x فإن x أ-بين أنه من أجل كل x من x فإن x

.
$$g$$
 بــ أدرس إشارة $g'(x)$ ، ثم شكل جدول تغيرات الدالة

. ين أن المنحنى
$$(C_g)$$
 يقبل مستقيما مقاربا مائلا ، يطلب تعيين معادلة له . (4

الفواصل محور الفواصل محور الفواصل نقط تقاطع (
$$C_{g}$$
) أحسب (5

$$(C_g)$$
 أنشئ المنحنى (6

.
$$g(x) = m$$
 وسيط حقيقي . ناقش بيانيا و حسب قيم الوسيط m عدد حلول المعادلة m (7

التبرين السيادس:

$$f\left(x\right) = \frac{-x^3 + 5x}{x^2 + 3}$$
: الدالة العددية المعرَفة على \mathbb{R} كما يلي f

.
$$\left(O\,; \overrightarrow{i}\,, \overrightarrow{j}\,\right)$$
 مثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس و المستوي المنسوب إلى المعلم المتعامد والمتجانس

بيّن أنه من أجل كل عدد حقيقي
$$x$$
 ، $f(x)+f(-x)=0$ ، ماذا تستنتج $f(x)$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x)$$
 أحسب (2)

ن أدرس اتجاه تغير الدالة
$$f$$
، ثم شكل جدول تغيراتها.

.
$$f(x) = -x + \frac{8x}{x^2 + 3}$$
: x عدد حقیقي عدد علی أجل کا عدد علی أبد (4

$$(C_f)$$
نا المنحنى $y=-x$ مقارب مائل للمنحنى (Δ) المادلة $y=-x$

$$\cdot$$
 (Δ) والمتقيم (C_f) والمتقيم النسبي للمنحنى (C_f)

. كين فواصل نقط تقاطع المنحنى (
$$C_f$$
) مع حامل محور الفواصل (5

$$(\Delta)$$
 أنشئ المنحنى (C_f) و المستقيم (6

$$x^{3}-mx^{2}+5x-3m=0$$
 . وسيط حقيقي . ناقش بيانيا و حسب قيم m عدد و إشارة حلول المعادلة : m

. و الدالة المعرفة على
$$\mathbb{R}$$
 ب $=f\left(-\left|x\right|\right)$ ب و الدالة المعرفة على h (8 بين أن الدالة h (6 زوجية ، ثم أنشئ المنحنى h اعتمادا على المنحنى h الدالة h (9 بين أن الدالة h (6 أنشئ المنحنى أن الدالة h (7 أن الدالة h (8 أنشئ المنحنى أن المنحنى أن

التسرين السابع:

.
$$P(x) = x^3 - 3x - 2$$
 ب بالعدود المعرف على \mathbb{R} ليكن (I) ليكن (I)

$$P(x) = (x+1)^2 (x-2) : x$$
 تحقق أنه من أجل كل عدد حقيقي (1

.
$$\mathbb{R}$$
 على $P(x)$ على $P(x)$ على (2

.
$$f(x) = \frac{\left(x+1\right)^3}{x^2}$$
: ب المعرفة على f المعرفة على (II

.
$$(O; \vec{i}, \vec{j})$$
 تمثيلهما البياني في المستو المنسوب إلى المعلم المتعامد و المتجانس (C_f)

.
$$f(x) = x + 3 + \frac{3x+1}{x^2}$$
: تحقق أنه من أجل كل عدد حقيقي غير معدوم (1

$$\lim_{x \to -\infty} f(x)$$
 و $\lim_{x \to +\infty} f(x)$ أـأحسب (2

. ا
$$\lim_{\substack{x \to 0 \\ x \to 0}} f\left(x\right)$$
 و فسر النتيجة هندسيا .

.
$$f'(x) = \frac{P(x)}{x^3}$$
 : أـبين أنه من أجل كل عدد حقيقي غير معدوم (3

بـ أدرس إتجاه تغير الدالة
$$f$$
 ثم شكل جدول تغيراتها.

$$(C_f)$$
 دا المعادلة $y=x+3$ مقارب مائل للمنحنى (4) ذا المعادلة (4) دا المعادلة (Δ) دا المعادلة (4)

.
$$(\Delta)$$
 والمستقيم (C_f) المنحنى الوضع النسبي للمنحنى

.
$$(\Delta)$$
 موازي للمستقيم (T_f) التي يكون فيها المماس (T_f) موازي للمستقيم (5 لدعين إحداثيي النقطة (T_f) . (T_f)

.
$$(T)$$
 و (Δ) والمستقيمين (Δ) والمستقيمين (Δ)

لا تنسونا بصالح جمائكم