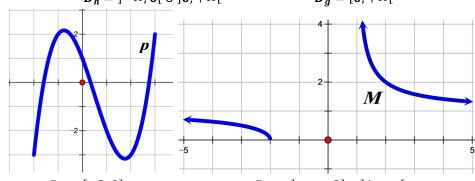
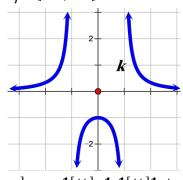

Prof Mustapha KHALDI

مجموعة التعريف D

ابيانيا:





$$D_h =]-\infty; 0[\cup]0; +\infty[$$

 $D_q = [0; +\infty[$

 $D_f =]-\infty; +\infty[$

 $D_n = [-2; 3]$

$$D_M =]-\infty; -2] \cup]1; +\infty[$$

 $\boldsymbol{D}_k = \left] - \infty; -\boldsymbol{1} \right[\; \cup \; \right] -\boldsymbol{1}; \, \boldsymbol{1} \left[\; \cup \; \right] \boldsymbol{1}; \, + \infty [$

الله حسابيا:

$$f(x) = 6x^2 - 15x + 8$$
 : لا جذر و لا كسر مثل

$$oldsymbol{D_f} = \mathbb{R} =]-\infty; +\infty[$$
نکتب:

$$x-2 \neq 0$$

$$f(x)$$
نکتب

:نكتب
$$f(x) = \frac{x^2+7}{x-2}$$
 كسر مثل (1

$$x \neq 2$$

$$extbf{\emph{D}}_f = \mathbb{R} - \{2\}$$
 أي $extbf{\emph{D}}_f =]-\infty; 2[\; \cup \;]2; \; +\infty[$

$$x-3 \geq 0$$

نکتب:
$$f(x) = \sqrt{x-3}$$
 نکتب (2

$$x \ge 3$$

$$D_f = [3; +\infty[$$

$$x + 5 > 0$$

$$f(x) = \frac{3x-1}{\sqrt{x+5}}$$
 :1مثال

$$x > -5$$

$$D_f =]-5; +\infty[$$

$$x+4\geq 0$$
 و $x-6\neq 0$

$$x+4 \geq \mathbf{0}$$
 و $x-6 \neq \mathbf{0}$ نكتب: $f(x) = \sqrt{x+4} + \frac{9}{x-6}$ و

$$x \ge -4$$
 و $x \ne 6$

$$D_f =]-4; 6[\cup]6; +\infty[$$

إذن القاعدة:

 $oldsymbol{D_f} = \mathbb{R} =]{-\infty}; +\infty[$ لا كسر و لا جذر: $oldsymbol{0}$

في الكسر نكتب: $0 \neq 1$ المقام

€ في الجذر نكتب: 0 ≤ ما داخل الجذر

في مجموع، طرح، جداء أو قسمة دالتين فأكثر: D_f هي تقاطع مجالات تعريف كل هذه الدوال

♦ الملخص:

مجموعة التعريف	الدالة
$D_f = \mathbb{R} =]-\infty; +\infty[$	f(x) = کثیر الحدود
$D_f = \{x \in \mathbb{R}/h(x) \neq 0\}$	$f(x) = \frac{g(x)}{h(x)}$
$D_f = \{x \in \mathbb{R}/g(x) \ge 0\}$	$f(x) = \sqrt{g(x)}$
$D_f = \{x \in \mathbb{R}/h(x) > 0\}$	$f(x) = \frac{g(x)}{\sqrt{h(x)}}$
$D_f = \{x \in \mathbb{R}/ g(x) \ge 0 \land k(x) \ne 0\}$	$f(x) = \sqrt{g(x)} + \frac{h(x)}{k(x)}$
$D_f = \{x \in \mathbb{R}/ g(x) \ge 0 \land h(x) > 0\}$	$f(x) = \frac{\sqrt{g(x)}}{\sqrt{h(x)}}$
$D_f = \left\{ x \in \mathbb{R} / \frac{g(x)}{h(x)} \ge 0 \land h(x) \ne 0 \right\}$	$f(x) = \sqrt{\frac{g(x)}{h(x)}}$
حيث $h(x)$ ، $g(x)$ و $k(x)$ كلها دوال كثيرات حدود	•

❖ العمليات على الدوال ومجموعة التعريف:

و g و التان معرفتان على D_f و و D_g على الترتيب. λ و عددان حقيقيان.

مجموعة التعريف	العملية
D_f	f + k
D_f	λf
$D_f \cap D_g$	f+g
$D_f \cap D_g$	$f \times g$
$\left\{x \in D_f \cap D_g \land g(x) \neq 0\right\}$	$\frac{f}{g}$
$D_{f \circ g} = \{ x / x \in D_g \land g(x) \in D_f \}$	$f[g(x)]$ أي $f \circ g$

Prof Mustapha KJIA-LDT