الدوال العددية

Prof Mustapha WHALDT

[I]. العمليات على الدوال

$$D_f = D_g$$
 تساوي دالتين: f و g متساويتين f تساوي دالتين: $f(x) = g(x)$

لعمليات الجبرية: f و g دوال عدية k أعداد حقيقية (2

التعريف	العملية
(f+k)(x)=f(x)+k	f + k
(f+g)(x) = f(x) + g(x)	f + g
$(\lambda f)(x) = \lambda f(x)$	λf
$(f \times g)(x) = f(x) \times g(x)$	$f \times g$
$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$	<u>f</u>
g = g(x)	\boldsymbol{g}

(fog)(x) = f[g(x)] :تركيب الدوال (3

[I]. اتجاه التغير

1) مراجعة

فإن	إذا كان	
f متزایدة	$f(x_1) < f(x_2)$ 9 $x_1 < x_2$	0
f متناقصة	$f(x_1) > f(x_2)$ 9 $x_1 < x_2$	2
f ثابتة	$f(x_1) = f(x_2)$	3

لمجال على مجال معناه f متزايدة على هذا المجال f متزايدة على هذا المجال f

*ملاحظة 2: (الفرق بين متزايدة ومتزايدة تماما، متناقصة ومتناقصة تماما)

f متزایدة	متزایدة تماما f
معناه f متزايدة ثم ثابتة أو ثابتة ثم متزايدة أو متزايدة ثم ثابتة ثم متزايدةالخ	معناه f متزایدة دون أن تكون ثابتة

• نفس الأمر بالنسبة لمتناقصة و متناقصة تماما

*ملاحظة مهمة۞: (الخطأ الشائع)

f متزايدة ليس معناه f موجبة و f متناقصة ليس معناه f سالبة و f علاقة أبدا بين تغيرات الدالة و إشارتها

2) العمليات على الدوال واتجاه التغير

اتجاه التغير	الدالة
و $f+k$ لهما نفس اتجاه التغير f	f + k
اِذَا كَانَ $0 < \lambda$ فَإِن f و f لهما نفس اتجاه التغير اِذَا كَانَ $f > \lambda$ فَإِن f و f متعاكسين في اتجاه التغير	λf
إذا كان f و g لهما نفس اتجاه التغير فإن f متزايدة تماما على f التغير فإن f متناقصة تماما على f و g متعاكسين في اتجاه التغير فإن f متناقصة تماما على f	fog
لا توجد قاعدة عامة إلا إذا أضيفت شروط على الدالتين	f + g
لا توجد قاعدة عامة إلا إذا أضيفت شروط على الدالتين	f imes g

vou أو λu ، u+k الشكل: u+k ملاحظة: لتسهيل دراسة اتجاه تغير أي دالة f من الأفضل كتابتها على الشكل:

حیث u و v دالتان مرجعیتان

]. التمثيل البياني	III
--------------------	-----

<u> </u>	** •** ·[
فإن	إذا كان
$ec{v}inom{0}{k}$ هو صورة C_f بانسحاب شعاعه C_g	g(x) = f(x) + k
$\overrightarrow{v}inom{-b}{0}$ هو صورة C_f بانسحاب شعاعه C_g	g(x) = f(x+b)
$\overrightarrow{v}inom{-b}{k}$ هو صورة C_f بانسحاب شعاعه C_g	g(x) = f(x+b) + k
λ بالاحتفاظ بفواصل C_f و ضرب ترتیب کی C_g نرسم C_g	$g(x)=\lambda f(x)$
$\overrightarrow{v}({b \choose k})$ هو صورة $\mathcal{C}_{\lambda f}$ بانسحاب شعاعه \mathcal{C}_g	$g(x) = \lambda f(x+b) + k$
هو نظیر C_f بالنسبة لمحور الفواصل C_g	g(x) = -f(x)
هو نظیر C_f بالنسبة لمحور التراتیب هو C_g	g(x) = f(-x)
هو نظیر C_f بالنسبة للمبدأ C_g	g(x) = -f(-x)
$f(x) \leq 0$ منطبق على C_f لما C_g و C_g و والنسبة محور الفواصل لما C_g منطبق على C_g لما C_g لما محور الفواصل و C_g نظير والنسبة لمحور الفواصل لما C_g بالنسبة لمحور الفواصل لما C_g تحت محور الفواصل	g(x) = f(x)
$x \leq 0$ اما C_f النسبة المحور التراتيب اما $x \geq 0$ و $x \geq 0$ بالنسبة المحور التراتيب اما $x \leq 0$	g(x) = f(x)

IV]. دساتیر تغییر معلم

 $(\Omega; \vec{t}, \vec{j})$ العلاقة بين إحداثيات نقطة M(x, y) في معلم قديم M(x, y) و احداثياها M(X, Y) في معلم جديد M(x, y) في معلم جديد حيث M(x, y) هي احداثيات Ω في المعلم M(x, y) المعلم M(x, y) المعلم M(x, y) المعلم M(x, y) في المعلم M(x, y) المعلم M(x, y)

Prof Mustapha KHA-LDT

$$\begin{cases} x = X + x_0 \\ y = Y + y_0 \end{cases}$$

محور التناظر

√ طریقة

1:

 $f(2a-x)=f(x) \Leftrightarrow x=a$ محور تناظر

√ طریقة ②:

 $f(a-x)=f(a+x) \iff$ محور تناظر x=a

✓ طریقة (3): دستور تغییر معلم

 $\begin{cases} x = a + X \\ y = Y \end{cases}$ محور تناظر x = a

1) إيجاد معادلة الدالة في المعلم الجديد:

Y = f(a + X)

2) إثبات أن Y دالة زوجية.

مركز التناظر

✓ طریقة ①:

 $f(2a-x)+f(x)=2b \Leftrightarrow M(a;b)$ مرکز تناظر W(a;b)

✓ طریقة ②:

 $f(a+x)+f(a-x)=2b \iff M(a;b)$ مرکز تناظر W(a;b)

✓ طریقة (3: دستور تغییر معلم

 $\begin{cases} x = a + X \\ y = b + Y \end{cases}$ حرکز تناظر W(a; b)

1) إيجاد معادلة الدالة في المعلم الجديد:

Y = f(a + X) - b

2) إثبات أن Y دالة فردية.

المنحنى الممثل للدالة: a
eq 0 حيث $ax^3 + bx^2 + cx + d$ عقبل دائما مركز تناظر $a \neq 0$