الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2014

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: تسيير واقتصاد

المدة: 03 سا و30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (04 نقاط)

$$6e^{-3x} + 7e^{-2x} - 9e^{-x} + 2 = 0$$

$$2e^{3x} - 9e^{2x} + 7e^{x} + 6 \le 0$$
 المتراجحة: \mathbb{R}

 $\log(x^2 + 100) = 1 + \log 2 + \log x$ المعادلة: \mathbb{R} حل في

التمرين الثاني: (05 نقاط)

أجب بصحيح أو خطأ، مع التبرير، في كل حالة من الحالات الآتية:

 $v_n = \ln u_n$:... \mathbb{N} متتالیة عددیة معرفة علی \mathbb{N} حدودها موجبة تماما و (v_n) المتتالیة المعرفة علی \mathbb{N} ب... (u_n) متقاربة فإنّ (v_n) متقاربة.

ب) إذا كانت (u_n) متناقصة فإنّ (v_n) متناقصة.

ج) إذا كانت (u_n) هندسية فإنّ (v_n) حسابية.

2/ الجدول الآتي يمثل سلسلة إحصائية:

x_{i}	1	2	3	4	5
ν	8	9	12	12	12

(3;10,8) هي $M_i(x_i;y_i)$ النقطة المتوسطة لسحابة النقط

ب) معامل توجيه مستقيم الانحدار بالمربعات الدنيا لسحابة النقط هو 3,1

التمرين الثالث: (04 نقاط)

ثلاثة أكياس متماثلة U_1 و U_2 و U_3 كل منها يحوي 6 كريات متماثلة، الكيس U_1 يحوي كريتين بيضاوين وأربع كريات حمراء، الكيس U_2 يحوي ثلاث كريات بيضاء وثلاث كريات حمراء والكيس U_3 يحوي خمس كريات بيضاء وكرية حمراء. نختار عشوائيا كيسا ثم نسحب منه دون اختيار كرية واحدة.

- 1) شكل شجرة الاحتمالات المتوازنة التي تنمذج هذه الوضعية.
 - $^\circ U_3$ ما احتمال سحب کریة بیضاء من الکیس (2
 - 3) ما احتمال سحب كرية بيضاء؟
- $^{\circ}$ U_{3} علما أنّ الكرية المسحوبة بيضاء، ما احتمال أن تكون من الكيس (4

التمرين الرابع: (07 نقاط)

- $g(x)=1-x^2-\ln x$ الدالة العددية g معرفة على $g(x)=1-x^2-\ln x$ الدالة العددية العددي
 - 1) ادرس اتجاه تغير الدالة g
 - g(x) أحسب (2) ثمّ استنتج تبعا لقيم g(1) أحسب (2)
- $f(x) = x 1 \frac{\ln x}{x}$ الدالة العددية f معرفة على $]0; +\infty[$ كما يلي:
- $(O\,;\vec{i}\,,\vec{j}\,)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(C_f\,)$
 - $\left(\lim_{x\to+\infty}\frac{\ln x}{x}=0\right)$ يعطى $\lim_{x\to+\infty}f(x)$ احسب (أ
 - ب) احسب f(x) أنتيجة هندسيا. $\lim_{x \to 0} f(x)$
- - ب) شكّل جدول تغيرات الدالة f
 - (C_f) مقارب مائل للمنحنى y=x-1 الذي معادلته (D) الذي أنّ المستقيم (أ)
 - (D) ادرس وضعية (C_f) بالنسبة إلى
- (T) عين فاصلة النقطة A من (C_f) التي يكون فيها المماس (T) موازيا للمستقيم (D) ثمّ اكتب معادلة للمماس (4)
 - (C_f) و (T) ، (D) ارسم (5
 - [1;3] احسب القيمة المتوسطة للدالة f على المجال [6]

الموضوع الثاني

التمرين الأول: (04 نقاط)

عيّن مع التبرير الجواب الصحيح الوحيد من بين الأجوبة الثلاثة المقترحة في كل حالة من الحالات الآتية:

I) أعضاء الطاقم الصحي لمؤسسة استشفائية موزعين حسب الجدول المقابل

اختير عشوائيا عضو من هذا الطاقم.

- 1 L	أطباء	ممرضون
ذكور	12	25
إناث	8	15

0,2

0,4

3

0,1

0,3

$$\frac{8}{23}$$
 (÷ $\frac{23}{60}$ (· $\frac{1}{23}$ (

2) احتمال أن يكون العضو المختار أنثى علما أنها طبيبة هو:

$$\frac{8}{23} \ (\Rightarrow \qquad \qquad \frac{2}{15} \ (\because \qquad \qquad \frac{2}{5} \ ()$$

II) الجدول المقابل يعرف قانون احتمال لتجربة عشوائية:

1) تباين قانون الاحتمال هو:

 $p(A \cap B)$ فإن p(B) = 0,3 ، p(A) = 0,4 هو: $p(A \cap B)$ فإن $p(A \cap B)$ هو:

التمرين الثاني: (04.5 نقطة)

الجدول الآتي يمثّل تغير سعر الكيلوغرام الواحد من مادة استهلاكية بين السنوات 2008 و 2012

السنة	2008	2009	2010	2011	2012
رتبة السنة x_i	1	2	3	4	5
ب سعر 1kg بالدو لار	3,64	3,76	3,81	3,95	4,39

- 1) احسب النسبة المئوية لتغير سعر الكيلوغرام الواحد من هذه المادة بين سنتي 2008 و 2012 .
 - مثّل سحابة النقط $M_i(x_i; y_i)$ في معلم متعامد. (2
 - جد إحداثيي G النقطة المتوسطة لسحابة النقط السابقة.
- y = 0.17x + 3.40 لين أنّ المعادلة المختصرة لمستقيم الانحدار بالمربعات الدنيا هي: y = 0.17x + 3.40
 - 5) بفرض أنّ تغير سعر الكيلوغرام الواحد من هذه المادة يبقى على نفس الوتيرة في السنوات القادمة.
 - أ) قدر سعر الكيلوغرام الواحد من هذه المادة في سنة 2016.
 - ب) في أيّة سنة سيصبح سعر الكيلوغرام الواحد من هذه المادة الاستهلاكية 5,61 دو لارا؟

التمرين الثالث: (04.5 نقطة)

 $u_{n+1} = \frac{2}{3}u_n - 1$ ؛ n عدد طبیعی $u_0 = 3$ عدد کما یلی: $u_0 = 3$ عدد کما یلی: المتتالیة العددیة (u_n) معرفة کما یلی:

- $u_n > -3$ فإنّ المراجع أنّه من أجل كل عدد طبيعي n فإنّ n
 - ب) بيّن أنّ المتتالية (س) متناقصة تماما.
 - ج) استنتج أنّ المنتالية (u_n) متقاربة.
- $\lim_{n\to\infty} (v_0+v_1+...+v_n)=18$ و $v_0=6$ دیث: q اساسها q حیث متتالیة هندسیة متقاربة أساسها q حیث q حیث q اساسها q حیث q حیث q حدث q
 - $\lim_{n \to +\infty} (v_0 + v_1 + \dots + v_n) = \frac{v_0}{1 q}$ (أ)
 - ب) احسب الأساس q ثمّ عيّن عبارة الحد العام v_n بدلالة n
 - u_n برهن أنّه من أچل كل عدد طبيعي $u_n = v_n 3$ ؛ u_n عبارة عبارة u_n بدلالة

التمرين الرابع: (07 نقاط)

 $f(x) = 6(1-2x)e^{-x} + 5$ كما يلى: $f(x) = 6(1-2x)e^{-x} + 5$ كما يلى:

- $(O; \vec{i}, \vec{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f)
 - $\lim_{x\to +\infty} xe^{-x}=0$ احسب ($\lim_{x\to +\infty} f(x)$ انتیجة هندسیا. (يعطی السب ($\lim_{x\to +\infty} f(x)$
 - 2) ادرس اتجاه تغير الدالة / ثمّ شكل جدول تغير اتها.
 - (C_f) أنشى (3
- $2,9 < \beta < 3$ و $0,7 < \alpha < 0,8$: بيّن أنّ المعادلة (x) = 3,5 تقبل في (0,7) حلين مختلفين (x) = 3,5 حيث (x) = 3,5 و (x) = 3,5 المتراجحة $(x) \leq 3,5$ المتراجحة $(x) \leq 3,5$ المتراجحة المتراجحة $(x) \leq 3,5$
 - $g(x) = (ax + b)e^{-x}$:... [0;7] بـــ دالة أصلية للدالة [0;7] بـــ [0;7] بـــ [0;7] بـــ دالة أصلية للدالة [0;7] بـــ [0;7] بـــ [0;7] بـــ دالة أصلية للدالة أصلية للدالة أصلية الدالة الدالة
 - ب) استنتج دالة أصلية للدالة f على [0;7]
 - [0;7] الكلفة الهامشية x لصناعة كمية x (مقدرة بالطن) من منتوج، حيث x ينتمي إلى المجال [0;7] الكلفة مقدرة بملايين الدنانير). $C_M(x) = f(x)$
- (10^{-2}) حدّد كمية المنتوج بحيث تكون الكلفة الهامشية أقل ما يمكن، وما هي قيمة هذه الكلفة?
 - 2) ما هي كميات المنتوج التي من أجلها لا تتجاوز الكلفة الهامشية 3,5مليون دينار؟
 - 3) نُذكّر أنّ دالة الكلفة الإجمالية دالة أصلية لدالة الكلفة الهامشية.
 - أ) بيّن أنّ الكلفة الإجمالية $C_T(x) = (12x + 6)e^{-x} + 5x + k$ عدد حقيقي.
 - $\cdot (C_T(0) = 2$ إذا علمت أنّ المصاريف الثابتة 2 مليون دينار (أي k علمت أنّ المصاريف