المستوى: 2 ع ت+2ت ر +2ر المـــدة: ســـاعـــان

إختبار الثلاثي الأول في مادة الرياضيات

التمرين الأول :

 $f(x)=x^2-2x-3$ وليكن $f(x)=x^2-2x-3$ على IR كمايلي: $f(x)=x^2-2x-3$ وليكن $f(x)=x^2-2x-3$ على المستوي IR دالة عددية معرفة على $f(x)=f(x-1)^2-4$: IR من f(x)=f(x) على الشكل: f(x)=f(x) بين أنه من أجل $f(x)=f(x-1)^2-4$: IR و استنتج أنه يمكن كتابة f(x)=f(x) على الشكل: f(x)=f(x) مدالة f(x)=f(x)=f(x) و استنتج أنه يمكن كتابة f(x)=f(x)=f(x)

(2) أحسب (hog)(5) ، (hog)(5) ، (goh)(0) ، (hog)(0)

(3) نضع]1:- و استنج إنجاه تغير الدالة f على g(I2) و (g(I2) و استنج إنجاه تغير الدالة f على IR

4) استنتج من 1) أن (C) هو صورة منحنى الدالة مربع بالسحاب يطلب تعيين شعاعه ثم أنشئ (C)

6) أحسب f'(x) الدالة المثبتقة للدالة f ثم أكتب معادلة المماس (Δ) لـ(C) في النقطة (2:5)

(Ct) عمادا على (F(x)= | x²-2x-3 | حيث: F(x)= | عمادا على (6)

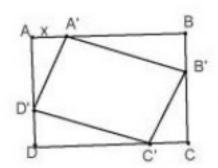
التمرين الثاني:

AC=12cm ;AB=10cm ;BC=8cm علية ABC

عين ثم أشئ النقطة G مرجح الجملة {(A,1);(B,2);C(C,1)}

(2) أثكن النقطة D منتصف [AC] ، بين أن G منتصف [BD]

3) عين ثم أنشئ مجموعة النقط M من المستوي التي تحقق: ||MA+2MB+MC||=||MA-2MB+MC||


4) نفرض الستوي منسوب إلى معلم (O, i; j) و نأخذ (B(2,1); C(6,0)) (4

(A,1);(B,2);C(C,1)} مرجح الجملة ((A,1);(B,2);C(C,1))

• E(2,0) بحيث تكون النقطة B مرجح النقطتين (A,α) و (A,α) عين عددين حقيقين B يحقيقان هذا

التمرين الثالث

ABCD مستطيل حيث: AB=4cm و BC=3cm و لتكن النقط 'D'، C'، B'، A' من القطع المستقيمة BC=3cm و لتكن النقط المستقيمة (انظر الشكل) (AB]، AA'=BB'=CC'=DD'=x عدد حيقيقي (انظر الشكل)

°1) عين مجال تغير قيم x

°2) أحسب بدلالة x مساحة كل من المثلثات 'CB'C' ، BA'B' ، AA'D' مساحة كل من المثلثات 'X و استنتج أن مساحة الرباعي 'A'B'C'D' هي : A'B'C'D'

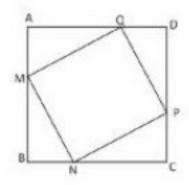
93) عين قيم X التي من أجلها تكون مساحة الرباعي 'A'B'C'D أصغر أو تساوي من نصف مساحة المستطيل ABCD

أقسام السنة الثانية التقنية و العلمية إختبار الفصل الأول في مادة الرياضيات

التمرين الأول :

ABCD مربع طول ضلعه 4cm النقط Q, P, N, M انتمي على الترتيب إلى, [CD], [AB] [BC], [AB]

نضع AM=BN=CP=DQ=x


1 - إلى أي مجل ينتمي x

2 - أحسب مسلحة المربع MNPQ من أجل x=1

3 -بين أن مساحة المربع S(x) MNPQ هي حيث S(x)=2x²-8x+16

4 - أكتب الشكل النموذجي لـ S(x) وشكل جدول تغير اتها

5 -حدد قيمة x التي من أجلها تكون المساحة أصغر (x)
 مايمكن

التمرين الثاني:

f (x)=3x3+2x2-9x-8; دالة كثيرة حدود حيث f

f(x)=(x-1) (ax2+bx+c) حيث c, b, a أوجد الأعداد الحقيقية f(-1) حيث f (-1)

و(D) مستقيم معادلته y=2x+2

a. أثيت أن المنحنى (cg) الممثل للدالة g والمستقيم (D) لهما نقطة A مشتركة ترتبيها معدوم

b. أحسب (Cg) ثم أكتب معادلة المماس ل (Cg) عند b

التمرين الثلث:

A و B نقطتان منمايزتان من المستوى حيث : AB=10

1 - أنشىء النقطة C مرجح الجملة { (B, 4) , (B, 4) }

2 - أنشىء النقطة D مرجح الجملة { (A, 4), (B, 1) }

3 - عين المجموعة E مجموعة النقط M من المستوي حيث :10 = 11 MA +4MB II = 10

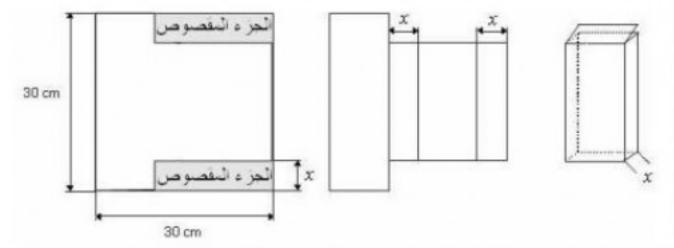
4 - لتكن F مجموعة النقط M من المستوي حيث : II 4MA + MB II = II MA - MB II = 1 AMA + MB II = 1 AMA - MB II = 1

المدة: 02 ساعة

السنة الثانية تقنى رياضيات

التمرين الأول (10pts)

 $f(x) = 2x^3 - 60x^2 + 450x : - R$ حددية معرفة على $f(x) = 2x^3 - 60x^2 + 450x : - R$


 (O, \vec{i}, \vec{j}) المنحني الممثل لها في الممثوي المنسوب إلى معلم ((C_j)

احسب (f'(x) ثم أدرس إشارته.

أنشئ جدول تغيرات f على المجل [0;20].

عين معادلة لـ مماس (C_f) عند النقطة التي فاصلتها (3)

4) نريد إنجاز علبة متوازيّة الْمستطيلات باستعمال قطعة من الورق المقوى مربعة الشكل طول ضلعها 30cm ، فنقوم يقص شريطين عرض كل منهما x (15) × 0 ، الوحدة هي cm) كما هو موضع في الشكل التالي:

. $v(x) = 2x^3 - 60x^2 + 450x$ بين أن: $v(x) = 2x^3 - 60x^2 + 450x$ بين أن: $v(x) = 2x^3 - 60x^2 + 450x$

ب) عين قيمة x بحيث نحصل على أكبر حجم ممكن.

التمرين الثاني (10pts)

[BC] مثلث كيفي. G مرجع الجملة المثقلة J ، [AC] مثلث كيفي. G مثلث كيفي. G مثلث ABC

G نشئ X مرجع الجملة المثقلة $\{(A,3),(C,1)\}$ ثم عين و أنشئ X مرجع الجملة المثقلة المثقلة X

. G بين أن G مرجح الجملة المثقلة $\{(I,3),(J,-2)\}$. استنج أن المستقيمين (BK) ، (U) وتقطعان في (BK) . ما طبيعة الرياعي (BK) . (ABK)

3) M نقطة كيفية من المستوي.

 $\overrightarrow{V}=2\overrightarrow{BI}$ ا) بين أن الشعاع ثابت ثم بين أن $\overrightarrow{V}=\overrightarrow{MA}-2\overrightarrow{MB}+\overrightarrow{MC}$ إبين أن الشعاع ثابت ثم بين أن

 $3\overline{MA} - 2\overline{MB} + \overline{MC} = \overline{MA} - 2\overline{MB} + \overline{MC}$: مجموعة النقط M من المستوي حيث : M من المستوي حيث (Γ) عين و أنشئ (Γ)

 $|3\overline{MA} - 2\overline{MB} + \overline{MC}| = |-2\overline{MA} - \overline{MB} + \overline{MC}|$: مجموعة النقط M من المستوي حيث : (Δ) مجموعة النقط (Δ)

لمنيلتي لكم بالتوفيق والنجاع

ثانوية افلح عبد الوهاب. تيارت. السنة الدراسية: 2014/ 2015

المستوى : الثانية تقنى رياضى المدة: 20 ساعة

﴿ اختبار الفصل الأول في مادة الرياضيات ﴾

التمرين الأول (نقاط):

 $f(x) = 2x^2 - 6x + 3$: كما يلي \Box كما يلي الدالة

 $S\left(\frac{3}{2};-\frac{3}{2}\right)$ المنحني الممثل للدالة f في المستوي المنسوب الى معلم $\left(O;\vec{i},\vec{j}\right)$ ، لتكن النقطة المستوي المنسوب الى المنحني الممثل للدالة المستوي المستوي المنسوب الى المنحني الممثل الدالة المستوي ال

- اکتب a,b,c اعداد حقیقیة یطلب تعیینها اشکل $f(x) = a(x+b)^2 + c$ اعداد حقیقیة یطلب تعیینها
 - $\left(C_{f}
 ight)$ أم ارسم $\left(S; ec{i}, ec{j}
 ight)$ أم ارسم اكتب معادلة المعلم $\left(C_{f}
 ight)$
 - f انجز جدول تغيرات الدالة f ثم وضح اصغر قيمة للدالة f
 - $x \in [-2,3]$ اذا کان العدد (عط حصر اللعدد)
 - $f(x) \le x$ حل في المتراجحة \mathbf{G}
- مثل بيانيافي المعلم $(o; \vec{i}, \vec{j})$ المستقيم ذي المعادلة y = x ثم تحقق من نتائج المتراجة $f(x) \le x$ بيانيا

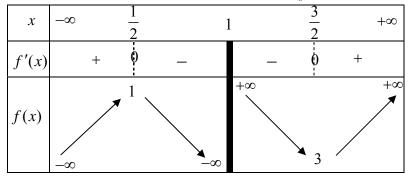
التمرين الثاني (نقاط):

ليكن ABCD رباعيا، حدد كل مجموعة من المجموعات التالية:

 $\|\overrightarrow{MA} - 3\overrightarrow{MB}\| = \|\overrightarrow{MC} + \overrightarrow{MD}\|$: مجموعة النقط M من المستوي بحيث: E_1

 $\|2\overline{MA} + \overline{MB} - \overline{MC}\| = \|\overline{MA} + \overline{MB} - 2\overline{MC}\|$: مجموعة النقط M من المستوي بحيث: E_2

مرتبطين خطيا. \overrightarrow{BC} مجموعة النقط M من المستوي بحيث يكون الشعاعان \overrightarrow{BC} و \overrightarrow{BC} مرتبطين خطيا.


 $3 \le \|\overrightarrow{MA} - 3\overrightarrow{MB} + \overrightarrow{MC} + 4\overrightarrow{MD}\| \le 6$: مجموعة النقط M من المستوي بحيث: E_4

 $\|\overrightarrow{MA} + \overrightarrow{MB} - 3\overrightarrow{MC}\| \ge \|2\overrightarrow{MA} - \overrightarrow{MC}\|$: مجموعة النقط M من المستوي بحيث: E_5

ملاحظة: يطلب ارفاق كل مجموعة برسم توضيحي على حدى.

التمرين الثالث (نقاط):

لتكن الدالة f ذات المتغير الحقيقي x ، قابلة للاشتقاق على كل مجال من مجموعة تعريفها ولها جدول التغيرات التالي:

 $f(x) = ax + b + \frac{c}{x-1}$: تكتب عبارة f(x) على الشكل التالي

- f'(x) أحسب $\mathbf{0}$
- a,b,c عين الأعداد الحقيقية: f عين الأعداد الحقيقية:

 (Δ) : y=x+1 ادر س وضعية المنحني (C_f) بالنسبة الى المستقيم $oldsymbol{\Theta}$

إنتهي

إختبار الثلاثي الأول

المستوى: 2 ثانوي رياضيات + تقني رياضي

إختبارفي مالاة الرياضيات

التمرين الأول (12 نقاصة) التمرين الأول (12 نقاصة) التعدية f

 $f(x) = x^3 - 3x^2 + 3x - 1$: \mathbb{R}

. $\left(O,\vec{i},\vec{j}\right)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس $\left(C_{f}\right)$

(If(1)-1

يطلب ما اعداد حقيقية يطلب c , b , a حيث $f(x) = (x-1)(ax^2 + bx + c)$

-2

و أعط تفسيرا بيانيا للنتيجة f(x)=0

-3 \mathbb{R}

و أعط تفسيرا بيانيا للنتيجة . f(x) > 0

(II

بین لماذا $\left(C_{_{f}}
ight)$ بقبل مماسا عند کل نقطة منه -1

f(x)

f فسر بيانيا النتيجة السابقة .

ABC

f'(x) = 0

.3 عين النقط من (C_f) التي يكون فيها معامل توجيهه المماس يساوي 3

. ایکن d m حیث y=mx+d مستقیم معادلته y=mx+d مستقیم معادلته -4

 $\left(D
ight)$ וצפט فيها موازية للمستقيم וצפט $\left(C_{\scriptscriptstyle f}
ight)$

m ناقش حسب قیم

□ التمرين الثاني ۞ : (80 نقالم)

 (O,\vec{i},\vec{j})

G

C(2;-2) B(-3;-1), A(1;3)

 $\overrightarrow{DA} - \overrightarrow{DB} + \overrightarrow{DC} = \overrightarrow{0}$

C B. A

 $D ext{ } G ext{ } G$ عين إحداثيي كل من النقطتين $C ext{ } G$

3- بين انَ الرباعي ABCD

بين أنَ النقط G,B في استقامية H

 $\left\| \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} \right\| = 3 \left\| \overrightarrow{MA} - \overrightarrow{MB} + \overrightarrow{MC} \right\|$ من المستوي حيث M

 (Δ) -5

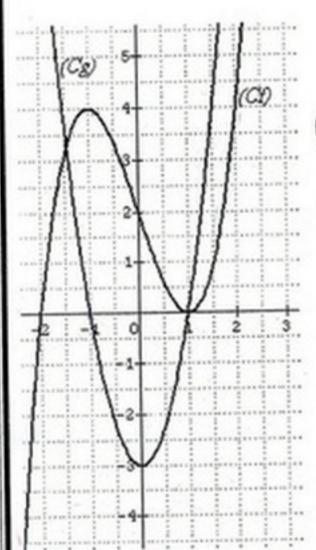
-1

 $.(\Delta)$ عين

 $\left\| \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} \right\| = 3 \left\| \overrightarrow{MA} - \overrightarrow{MB} \right\|$ من المستوي حيث M

(C)-6

 $\cdot(C)$


عين

ۗ بالتوفيق ۞ أستاءُ الماءلة

D

الإختبار الأول في مادة الرياضيات

التمرين الأول :

$$f(x) = x^3 - 3x + 2$$
 : كمايلي R كمايلي $f(x) = x^3 - 3x + 2$ كمايلي وليكن R كمايلي وليكن R كمايلي وليكن R كمايلي يا كمايلي وليكن R كمايلي يا كمايلي وليكن R كمايلي يا كمايلي وليكن ومتجانس R كمايلي وليكن ومتجانس ومتعانس ومتجانس ومتجانس ومتجانس ومتجانس ومتجانس ومتعانس ومت

$$g(x) = 3x^2 - 3$$
 : كمايلي R كمايلي و المعرفة على R المعرفة على المعرفة

وليكن
$$(C_g)$$
 التمثيل البياني لها في المعلم السابق (أنظر الشكل المقابل)

$$g(x) = 0$$
: x المعادلة ذات المجهول الحقيقي R المعادلة ذات المجهول الحقيقي

ر 5) ادرس إشارة 'f على R . 6) ماهو التخمين الذي يمكن أن تدلي به فيما يخص العلاقة الموجودة بين إشارة المشتقة

في المستوي المنسوب إلى المعلم المتعامد و المتجانس (o,i,j) نسمي

$$y = \frac{-1}{3} n^2 + 19$$
 $y = n^2$ المنحنيين معادلتهما على الترتيب $y = \frac{1}{3} n^2 + 19$ $y = n^2 + 19$ المنحنيين (C₂) و (C₂) نقطتان مشتركتان يطلب تعيين إحداثيتاهما.

2− نسمي النقطة A ذات الفاصلة السالبة و B الفاصلة الأخرى

المناسين (T_2) و (T_1) للمنحنيين (T_2) و (T_3) عند النقطة T_3 و إستنتج أن المستقيمين (T_3) و (T_3) متعامدان. T_3 متعامدان. (T_3) و (T_3) و (T_3) للمنحنيين (T_3) و (T_3) عند النقطة T_3 و إستنتج أن المستقيمين (T_3) و (T_3) متعامدان.

التمرين الثالث:

$$B(1;0), A(-1;4)$$
 يعتبر النقط $(0,\vec{i},\vec{j})$ يعتبر النقط $B(1;0), A(-1;4)$ و $C(5;-2)$

1 C, B, A lied (1

 $\{(A,1),(C,1)\}$ أحسب إحداثيي النقِطة H مرجح الجملة المثقلة أحسب إحداثيي (2

(3) لتكن النقطة G مرجح الجملة المثقلة {(A,1), (B,-4)(C,1)}.
(A,1), (B,-4)(C,1)}
احسب احداثيى النقطة G
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

$$||\overline{MA} - 4\overline{MB} + \overline{MC}|| = ||MA + \overline{MC}||$$
 مجموعة النقط M من المستوي حيث M من المستوي حيث (E) لتكن (A

أ) بين أنه من أجل كل نقطة M من المستوي فان :

 $.\overline{MA} + \overline{MC} = 2\overline{MH}$ \circ $\overline{MA} - 4\overline{MB} + \overline{MC} = -2\overline{MG}$

F بين أن M تنتمي الى المجموعة F يعني أن النقطة M متساوية البعد عن H و G

ج) استنتج طبيعة (E) و أرسمها .

*** اختبار الفصل الاول في مادة الرياضيات ***

-	لتمرين الأول (7ن):
	$P(x) = 4x^3 - 4x^2 - 15x + 18$: کثیر الحدود حیث : $P(x)$
1.5) أثبت أن 2 – هو جذر لِـ $P(x)$. ثم حلل $P(x)$ إلى جذاء كثيرات الحدود من الدرجة الأولى
1	P(x) عين كل جذور ($P(x)$
2	. $P(x) \le 0$ ، $P(x) = 18$ المتراجحة التاليتين : $P(x) \le 0$ ، $P(x) \le 0$ ، $P(x) \le 0$
	(E) $(m-1)x^2-2(m+2)x+m+1=0$: التالية (E) دات المجهول (E) دات المجهول (E) التالية (E)
.25	عين قيم العدد الحقيقي m حتى تقبل المعادلة (E) حلين متمايزين m
.25	$(m-1)x^2-2(m+2)x+m+1<0$: x عين قيم العدد الحقيقي m حتى يكون من أجل كل عدد حقيقي x
	لتمرين الثاني (6ن):
	و الدالة المعرفة على (C) به $f(x) = x + 1 + \sqrt{x^2 + 4x}$ البياني في المستوي $f(x) = x + 1 + \sqrt{x^2 + 4x}$
2	f(x)=0 المعادلة f ثم حل في f المعادلة $f(x)=0$
2) احسب نهایات الدالة f عند ص و عند ص
	$+\infty$ عند (C) عند $y=2x+3$ بين أن المستقيم (Δ) الذي معادلته $y=2x+3$ مقارب للمنحي (Δ) عند
1	ادرس الوضعية النسبية لـ (C) و (Δ)).
	.(2)3(0)
	لتمرين الثالث (7ن):
0.5	$U_0=1$ المتتالية العددية المعرفة على N بالعبارة التراجعية $U_{n+1}=2+3U_n$ و حدها الاول $U_n=1$
	$U_2; U_1$
	$V_n = \frac{2}{U_{m+1}} : n$ عدد طبیعی 2. نضع من اجل کل عدد طبیعی 2.
1.5	ا- بين ان (Vn) متتالية هندسية يطلب تعين اساسها و حدها الاول
,	ب- اعطى عبارة الحد العام Vn بدلالة n ثم استنتج عبارة Unبدلالة n
î	$\lim_{n\to\infty} U_n _{\infty} U_n$
	د- احسب المجموعين S_n و N_n و الجداء N_n حيث:
	$S_n = v_0 + v_1 \dots + v_{n-1}$
3	$X_n = v_0^2 + v_1^2 + \cdots + v_{n-1}^2$
	$\pi_n = v_0 \times v_1 \dots \times v_{n-1}$

بالتوفي

```
البممورية الجزائرية الديمقراطية الشعبية
```

ثانوية بلداج قاسو نورالدين- الشاهد -

يوم: 2013/12/03

إختبار الغصل الأول فيى عادة الرياضيات

المستوى: 2غ به + 2 ر + 2به ر المستوى: 2غ به + 2 ر + 2به ر

التمرين الأول ،

أجب بصحيح أو خطأ مع التعليل

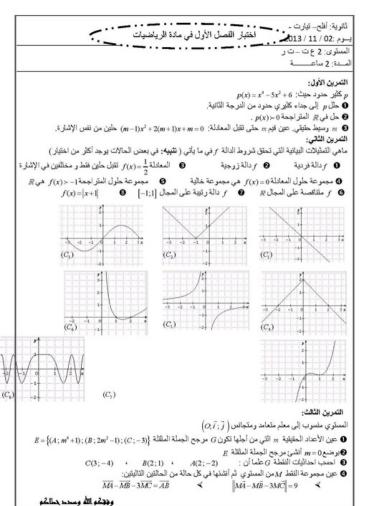
- 1. المعادلة $0 = 2014 2013 \times 2014$ تقبل حلين متمايزين (دون حساب المميز)
- .]- ∞ , 1] متزايدة تماما على [$f(x)=\sqrt{1-x}$, -] . $-\infty$, 1] متزايدة تماما على [$f(x)=\sqrt{1-x}$, .2
- m عدد حقيقي $\{(A, m^2+1); (B, m); (C, -1)\}$ عدد حقيقي $\{(A, m^2+1); (B, m); (C, -1)\}$

التمرين الثانيي -

 $p(x) = x^3 - 2x^2 - 5x + 6$ ليكن كثير الحدود p(x) ذو المتغير الحقيقي p(x)

- أحسب (2-) و ماذا تستنتج ؟
- $p(x)=(x+2)(ax^2+bx+c)$: x عين الأعداد المقيقية c , b , a بحيث يكون من أجل كل عدد حقيقي p(x)=0 المعادلة p(x)=0
 - $\rho\left(\frac{2013}{1435}\right)$ و أستنتج إشارة \mathbb{R} و أستنتج إشارة \mathbb{R} . 4

التمرين الثالث ،


AB = AC = 4cm مثلث قائم في A و متساوي المعاقين حيث AB = AC

- 1. عين ثم أنشئ النقطة G مرجح الجملة المثقلة {(A, 2); (B, 1); (C, 1)}
- 2. M نقطة كيفية من المستوي .
- $2\overline{MA}+\overline{MB}+\overline{MC}=4\sqrt{10}$ عين المجموعة M من المستوي التي تحقق M
 - . (C) ثم أنشئ (C) ثم أنشئ (C) ثم أنشئ (C) .
 - عين ثم أنشئ المجموعة (D) للنقط M من المستوي التي تحقق: $|\overline{MA} - 2\overline{MB} - \overline{MC}| = 2|\overline{MA} - 2\overline{MB} - \overline{MC}|$

التمرين الرابع ، خاص به : 2ر+2ت ر

(E) $\leftarrow ---- x^2 - (\sqrt{3} + 1) x + 2\sqrt{3} - 2 = 0 : <math>X$ نعتبر المعادلة ذات المجهول الحقيقي

- eta و lpha و lpha المعايزين أن المعيز $lpha = (3-\sqrt{3})^2$ و lpha بين أن المعيز $lpha = (3-\sqrt{3})^2$ و lpha
 - β , α Let $\alpha^2 + \beta^2$ Let $\alpha^2 + \beta^2$. 1

السنة الدراسية: 2016 / 2015

المستوى: 2 ت ر

إختبار الثلاثي الأول في مادة الرياضيات

ثانوية محد زيتونى الدويرة

تاريخ الإجراء: 25 /11 / 2015

المدة: ساعتان

التمرين الأول: (06 نقاط)

x مربع طول ضلعه 10 و AMPN مربع طول ضلعه ABCD في الشكل المقابل

. I = [0;10] عدد حقيقي ينتمي إلى المجال عدد حقيق

لتكن S(x) مساحة الجزء الملون في الشكل

. x عبر عن مساحة المربع AMPN ثم مساحة المثلث CPD بدلالة

. $S(x) = -x^2 + 5x + 50$: I من أجل كل x من أجل كل (2

. عين قيمة x التي تكون من أجلها المساحة S(x) أكبر ما يمكن x

(E)سريد تعيين قيم x التي تحقق المعادلة x التي تحقق المعادلة x التي تحقق المعادلة x التي تحقق المعادلة x

. $16x^3 - 21x^2 - 49x + 54 = 0$ تکافئ (E) اً این أن

. (E) نا العدد 2 مل المعادلة (E

. (E) عين قيم x التي تحقق المعادلة

التمرين الثاني: (07 نقاط)

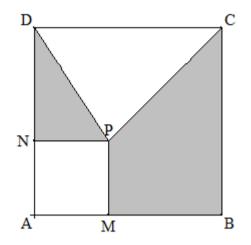
. $\begin{bmatrix} AC \end{bmatrix}$ و J مثلث حیث I ، AB = AC = 5cm مثلث حیث ABC

. $\{(A;3),(B;2)\}$ أنشئ النقطة G مرجح الجملة (1

. $3\overrightarrow{HA}+2\overrightarrow{HB}+\overrightarrow{HC}=\overrightarrow{0}$: كا النقطة المعرفة كمايلي (2

. $\{(G;5),(C;1)\}$ أ H مرجح الجملة الجملة H

. $\left\{ (I;2),(J;1) \right\}$ مرجح الجملة H ن بين أن ب


ج / استنتج طريقة بسيطة لإنشاء النقطة $\,H\,$ ثم أنشئها .

. K في النقطة (BC) يقطع (AH) المستقيم

. $\{(A;1),(H;-2)\}$ مرجح الجملة * بين أن K مرجح

. $\|3\overrightarrow{MA} + 2\overrightarrow{MB} + \overrightarrow{MC}\| = 6\|\overrightarrow{MA} - 2\overrightarrow{MH}\|$ عين ثم أنشئ (E_1) مجموعة النقط M من المستوي التي تحقق (4

. $\left\| 3\overrightarrow{MA} + 2\overrightarrow{MB} \right\| = \left\| \overrightarrow{MI} - \overrightarrow{MJ} \right\|$ عين $\left(E_2 \right)$ مجموعة النقط M من المستوي التي تحقق (5

التمرين الثالث: (07 نقاط)

الدالة المعرفة على * كمايلي : $f(x) = \frac{x^2 - x + 1}{x}$ كمايلي : $f(x) = \frac{x^2 - x + 1}{x}$ كمايلي : $f(x) = \frac{x^2 - x + 1}{x}$ كمايلي : $f(x) = \frac{x^2 - x + 1}{x}$ كمايلي : $f(x) = \frac{x^2 - x + 1}{x}$ كمايلي : $f(x) = \frac{x^2 - x + 1}{x}$ كمايلي : $f(x) = \frac{x^2 - x + 1}{x}$ كمايلي : $f(x) = \frac{x^2 - x + 1}{x}$ كمايلي : $f(x) = \frac{x^2 - x + 1}{x}$ كمايلي : $f(x) = \frac{x^2 - x + 1}{x}$ كمايلي : $f(x) = \frac{x^2 - x + 1}{x}$ كمايلي : $f(x) = \frac{x^2 - x + 1}{x}$ كمايلي : $f(x) = \frac{x^2 - x + 1}{x}$ كمايلي : $f(x) = \frac{x^2 - x + 1}{x}$ كمايلي : $f(x) = \frac{x^2 - x + 1}{x}$ كمايلي : $f(x) = \frac{x^2 - x + 1}{x}$

- f أحسب نهايات f
- 2) أدرس اتجاه تغير f ثم شكل جدول تغيراتها .
- . يين أن (C_f) يقبل مستقيما مقاربا شاقوليا يطلب تعيين معادلته (3
- . $\left(C_f\right)$ الذي معادلته y=x-1 مستقيم الذي معادلته $\left(\Delta\right)$ الذي معادلته $\left(\Delta\right)$
 - . (Δ) بالنسبة إلى المرس وضعية (C_f) بالنسبة الى
 - . $\left(C_{f}\right)$ بين أن النقطة $A\left(0,-1\right)$ مركز تناظر للمنحني (5
 - $.(C_f)$ أنشئ (6
 - . f(x) = m عدد وإشارة حلول المعادلة m عدد وإشارة حلول المعادلة (7

المدة: ساعتان المادة: الرياضيات السنة الدراسية: 2015-2016 اختبار الفصل الأول المستوى: 2 ئالوي الأقسام: 2 عت 1, 2, 3 و 2 ت ر

ثانوية بنرتونة

التمرين الأول: (ن) أ. ليكن كن المرين و م $h(x) = x^3 + x^2 - 7x + 2$ Light Street 1. Light Street 1.

• أحسب (2) أثم أعط تحليلا ل (x) الى جداء عاملين. h(x) < 0 و المتراجعة IR و المعادلة IR و على المعادلة و المعادلة و على الم

 $f(x) = x^2 + 2x - 3$: ب \mathbb{R} با المعرفة على f المعرفة على الدالة f المعرفة على الدالة أ

 $g(x) = \frac{2x+1}{x-1}$: بالدالة g المعرفة على $g(x) = \frac{2x+1}{x-1}$ $(0; \vec{l}, \vec{j})$ سنجانس و منجانس معلم متعامد و منجانس (C_g) و (C_g) و (C_g)

A(1; 2) مركز تناظر للمنحنى A(1; 2) .

 (C_g) و (C_f) و فواصل نقط تقاطع (C_f) و (C_g)

انطلاقا من المنحنى الممثل لدالة المربع f(x) انطلاقا من المنحنى الممثل لدالة المربع الكتب f(x)

و عددان حقیقیان $g(x) = a + \frac{b}{x-1}$, $\mathbb{R} - \{1\}$ عددان حقیقیان در بین آنه من اجل کل x من $g(x) = a + \frac{b}{x-1}$ بین آنه من اجل کل x من $g(x) = a + \frac{b}{x-1}$ يطلب تعيينهما و استنتج كيفية رسم المنحنى (Cg) انطلاقا من المنحنى دالتين احداهما دالة المقلوب

> ئم انتىنە. $f_2(x)=f(|x|)$ و $f_1(x)=|f(x)|$ حيث f_2 حيث f_3 و المعرفتين على f_3 حيث الدالتين f_3 و f_3

. أرسم (C_f) انطلاقا من (C_f) مع الشرح (C_f)

 (C_f) انطلاقا من (C_f) انطلاقا من (C_f) انطلاقا من (C_f)

تمرين الثاني: (ن) $\{(A,1);(B,2);(C,3);(D,6)\}$ ليكن ABCD مربعا مركزه G و G مرجح الجملة المثقلة

ا. أنسى I مرجح الجملة {(A, 1); (C, 3)} و ل مرجح الجملة {(B, 2); (D, 6)}

بین ان G مرجح النقطتین I و J المرفقتین بالمعاملین 1 و 2 علی الترتیب ثم أنشئ G.

نكن M نقطة من المستوى .

عين ثم أنشى مجموعة النقط M التي تحقق المساواة

 $\|\overrightarrow{MA} + 2\overrightarrow{MB} + 3\overrightarrow{MC} + 6\overrightarrow{MD}\| = 3\|\overrightarrow{MA} + 3\overrightarrow{MC}\|.$

 $(A, \overrightarrow{AB}, \overrightarrow{AD})$ land (A, $\overrightarrow{AB}, \overrightarrow{AD}$)

ه أوجد احداثيي G

ه اوجد احداثيي 'G مرجح الجملة المنقلة (C, 1); (D, 2)} مرجح الجملة المنقلة (A, 3); (B, 6); (C, 1); (D, 2)}.

ه بین أن النقط G , O و G في استقامیة

بالتو الن

علم ميلود عبدالمميد - التأثير السنة الدراسية: 2016 - 2017

مدة الانجاز: ساعتان

التاريخ: 05/12/2016 المستوى: 2 ثانوي عت + ت ر

اختبار الثلاثي الأول

ُ التمرين الأول ©∂۞ : __ ر08 نقاطی

 $P(x) = x^3 + 2x^2 - 3$: نعتبر في المجموعة \mathbb{R} كثير الحدود $P(x) = x^3 + 2x^2 - 3$

- P(1) أحسب الحدود P(1)
 - P(x) = 0 المعادلة \mathbb{R} حل في
- P(x) < 0: أدرس إشارة P(x) < 0 أدرس إشارة P(x) < 0
 - $g(x) = \frac{x^3 + 2x^2 3}{-2x^2 3x + 5}$: (4)
 - $-2x^2 3x + 5 = 0$: أ) حل في \mathbb{R} المعادلة التالية

عين قيم العدد الحقيقي x بحيث يكون للعبارة g(x) معنى .

 $g(x) \le 0$: المتراجحة \mathbb{R} في \mathbb{R}

å التمرين الثانى ©⊕⊗: ــ __(07 نقاط)

ABC = 8cm و AC = 12cm, AB = 10cm مثلث حیث ABC

لتكن النقطة I مرجح الجملة المثقلة $\{(B;3),(C;-1)\}$ ، النقطة J مرجح الجملة المثقلة $\{(B;3),(C;-1)\}$ والنقطة $\{(A;1),(B;3),(C;-1)\}$ مرجح الجملة المثقلة G

- J أنشوع النقطتين Iو J
- . بين أنَ C,Iو G في إستقامية C,I
- . يَين أَنَ النقط A,J في إستقامية G
- . G النقطة G بالنسبة للمستقيمين (CI) و (CI) أنشئ النقطة (4
- . (Δ) عين طبيعة (Δ) مجموعة النقط M من المستوي والتي تحقق : $\|\overline{MA} + 3\overline{MB}\| = 2 \times \|3\overline{MB} \overline{MC}\|$ عن طبيعة (Δ)
- (Γ) عين طبيعة (Γ) مجموعة النقط M من المستوي والتي تحقق $\|\overrightarrow{MA} \overrightarrow{MC}\| = \|\overrightarrow{MA} \overrightarrow{MC}\|$ غين طبيعة (Γ) عين طبيعة (Γ)

التمرين الثالث ©©⊗:_____ _____ (05 نقاط)

 $f(x) = x^2 + 2x - 1$ الدالة العددية المعرفة على المجموعة \mathbb{R} بالدالة العددية المعرفة على المجموعة

 $(O,ec{i},ec{j})$ المنحني الممثل للدالة f في المعلم المتعامد والمتجانس الممثل للدالة المعلم المتعامد والمتجانس المثل الم

- $f(x) = (x+1)^2 2$: لدينا عدد حقيقي عدد عقيق أنه من أجل كل عدد عقيقي (1
- 2) بين أنه يمكن الحصول على المنحنى (e_f) بإستعمال المنحنى (P)الممثل للدالة مربع بتحويل نقطى بسيط يطلب (e_f) تعیینه ثم أرسم المنحنی
 - $\frac{f(-2+h)-f(-2)}{h}$ النسبة المعدد حقيقي غير معدوم ، أحسب بدلالة h النسبة غير معدوم) أ
 - f'(-2) عين f'(-2) عين الدالة f قابلة للإشتقاق عند القيمة f'(-2)
 - ج) أكتب معادلة ديكارتية للماس (T) للمنحنى (\mathcal{C}_f) عند النقطة ذات الفاصلة 2 أرسم (T)

﴾ بالتوفيق⊙⊖ والنجاح ۞ ۞ أساتذة الهادة ۞ ۞

LYCÉE HADJ - MILOUD- ABDELHAMID - CHLEF 2016 /2017

ثانوية الشريف الادريسي بحمام الضلعة

الإحستبار الأول في الرياميات ___

السنة الثانية تقني رياضى

المدة: ساعتان

ك التمرين الأول: (I2 ن)

 $f(x) = \frac{x}{x+2}$: بالعبارة $R - \{-2\}$ على والم على f

 $\left(O; \vec{i}; \vec{j} \right)$ تمثيلها البياني في المستوي المنسوب إلى معلم متعامد $\left(C_f \right)$

 $f(x)=a+rac{b}{x+2}$: عين قيمتي العـــددين الحقيقيين a و b الذي يكون من أجلهما : (OI

. (02): أحسب نهايات الدالة f عند أطــــراف مجموعة تعريفها

. $\left(C_f
ight)$: استنتج المستقىيمات المسقارية له (03)

. أدرس اتجاه تغيير الدالة f و شكل جيول تغييراتها f

 $x_0=0$ هماس $\left(C_f
ight)$ هماس (T) هماس (خات الفاصلة (T) هادئة (T) اكتب معادئة (T

. عين نقط تقاطع $\left(C_{f}
ight)$ مع محــوري الفــواصل و التراتيب (06

 $\left(C_{f}
ight)$: أنشئ بدقة المنتحني (07)

كرالتمرين الثاني: (08 ن)

المستوي منسوب إلى معلم متعامد ومتجانس B(-2,-1) ، A(3,0) ، $\left(o;\ ec{i}\ ;ec{j}
ight)$ نقط

. بين أن النقط C ، B ، A ليست على استقامية . -01

G تأكد أن الجملة المثقلة $\{(A,2),(B,1),(C,1)\}$ تقبل مرجح -02

. G أحسب إحداثيات النقطة -03

 $\|2\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\|=4\sqrt{5}$ عجموعة النقط M من المستوي التي تحقق : -04

 $A \in (E)$ ب بين أن -

- ج - علم النقط C ، B ، A ثم أنشئ المجموعة .

منتصف القطعة المستقيمة [BC] برهن أن النقط A ، G ، I على استقامية I -05

يوم: 2016/12/07 المدة: 02 سا

المستوى : 2 ر + 2 ت ر

كرالتمرين الأول :80<u>ن</u>

. (o, \vec{i}, \vec{j}) يتكن الدالة f المعرفة على $f(x) = \frac{x-1}{-x}$ به بياني في معلم متعامد و متجانس $f(x) = \frac{x-1}{-x}$ بالدالة f المعرفة على الدالة ا

.
$$f(x) = a + \frac{b}{x}$$
: عين العددين a و a حيث - $\mathbf{0}$

f الدالة المشتقة f للدالة -2

. $x_0=-1$ الفاصلة الماس (T) المنحنى الدالة f عند النقطة ذات الفاصلة (T) معادلة الماس - الكتب معادلة الماس (T)

. f(-0.999) أم عين قيمة مقربة للعدد f(-1+h) أم عين قيمة مقربة للعدد -40.999 - استنتج

. (C_f) هي مركز تناظر للمنحنى $\Omega(0,-1)$ هي مركز $\Omega(0,-1)$

. (C_f) نين كيفية رسم التمثيل البياني للدالة f انطلاقا من التمثيل البياني لدالة مقلوب، ثم أنشئ -6

$$g(x) = -1 - rac{1}{|-x|}$$
 به نعتبر الدالة g المعرفة على $g(x) = -1 - rac{1}{|-x|}$ با

. (C_f) انطلاقا من (C_g) انطلاقا من g مین کیف یمکن رسم انطلاقا من g

. ارسم (C_g) في نفس المعلم /

کے التمرین الثانی: 50ن

(سيط حقيقي m) $(m-2)x^2 + (7m+5)x - 8m = 0$ سيط حقيقي $P_m(x)$ کثير الحدود للمتغير الحقيقي $P_m(x)$

. عين قيم m حتى تكون المعادلة (E) من الدرجة الثانية $oldsymbol{0}$

. عين قيم m حتى تقبل المعادلة (E) حلين مختلفين في الإشارة - 2

. عين قيم m حتى يكون العدد (-1) حل للمعادلة (E)، ثم استنتج الحل الأخر -3

. (E) نضع m=-1 نضع m=-1 نضع 4

$$\frac{-3x^2-2x+8}{3x-4} \le \sqrt{x^2+3}$$
 : المتراجحة $-\left\{\frac{4}{3}\right\}$ ب / ب حل في

التمرين الثالث: 20ن

C(2,3)، B(4,-2)، A(-2,0) نعتبر النقط $(O,ec{i},ec{j})$ نعتبر النقط معلم متعامد ومتجانس

. $\left\{(A,\alpha),\left(B,\alpha^2+1\right),\left(C,4\alpha-1\right)\right\}$ نقطة معرفة كما يلي : $\overrightarrow{-HA}+2\overrightarrow{BH}=\overrightarrow{0}$ و $\overrightarrow{-HA}+2\overrightarrow{BH}=\overrightarrow{0}$

 $oldsymbol{\Phi}$ بين أن النقطة H هي مرجح النقطتين A و B المرفقتين على الترتيب بمعاملين يطلب تعيينها .

2- علم النقط A و A ، ثم أنشئ النقطة H .

. G_1 التي من اجلها تكون موجودة . ثم أنشئ النقطة - $oldsymbol{G}_{lpha}$

. على استقامة واحدة G_1 ، H و C

◘- عين و أنشئ مجموعة النقط M من المستوي في الحالتين الآتيتين :

 $(E_1): \|\overrightarrow{MA} + 2\overrightarrow{MB} + 3\overrightarrow{MC}\| = 3 \|\overrightarrow{MA} - \overrightarrow{MB}\|$

 $(E_2): \|\overrightarrow{MA} + 2\overrightarrow{MB} + 3\overrightarrow{MC}\| = 2\|\overrightarrow{MA} + 2\overrightarrow{MB}\|$

انهی انهی التوفیق 🔊 بالتوفیق

وزارة التربية الوطنية

الشعبة: تقني رياضي المستوى: السنة الثانية ثانوي

إختبار الثلاثي الأول في مادة الرياضيات

التمرين الأول (05ن):

 $f(x) = \sqrt{\frac{x+3}{x+2}}$: بالدالة المعرّفة على أكبر مجموعة ممكنة D جزء من \Re ب

- $D =]-\infty; -3] \cup]-2; +\infty[$: بين أنّ : 1
- . بين أنّ : $f = g \circ h$: ميث g أهي الدالة " الجذر التربيعي" ، و $f = g \circ h$: 2.
 - . h عين D_h مجموعة تعريف الدالة
- h نم استنتج إتجاه تغير الدالة h نم الدينا : $h(x) = 1 + \frac{1}{x+2}$: من $h(x) = 1 + \frac{1}{x+2}$. $h(x) = 1 + \frac{1}{x+2}$
 - . (O,I;J) مركز تناظر للمنحني (C_h) الممثل للدالة معلم $\Omega(-2,1)$ مركز . 5
 - في (C_h) منه أرسم $(k:x\mapsto \frac{1}{x})$ "مقلوب $(k:x\mapsto \frac{1}{x})$ أثم أرسم (C_h) في معلم (C_h) معلم . (O,I;J)

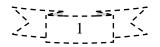
التمرين الثاني (06ن):

 $\overrightarrow{AH} = \frac{1}{3}\overrightarrow{AB}$ بحیث: (p) بحیث المستوي (P) نقطة من المستوي (BC) بحیث المستوي

- 1- بين أن H هي مرجح النقطتين B ، A المرفقتين على الترتيب بمعاملين يطلب تعينهما .
 - -2 لتكن G مرجح الجملة {(A;1);(B;2);(C;3)}
 - أ- أكتب $\overrightarrow{\mathbf{AG}}$ بدلالة $\overrightarrow{\mathbf{AB}}$ و $\overrightarrow{\mathbf{AC}}$ ثم أنشئ النقطة $\overrightarrow{\mathbf{AG}}$

 $\|\overrightarrow{\mathbf{MA}} + 2\overline{\mathbf{MB}} + 3\overline{\mathbf{MC}}\| = \|\overrightarrow{\mathbf{MA}} - \overline{\mathbf{MB}}\|$ عين وأنشئ (C) مجموعة النقط M من المستوي بحيث:

- و A(-1;0) منسسوي (P) منسسوب إلى معلم متعامد ومتجانس ($\vec{i};\vec{j}$) ، ولتكن (P) و المستوي (B($\vec{a};\vec{j}$) ، ولتكن \vec{G}_{α} ولتكن (C(1;3)) ولتكن (B($\vec{a};\vec{j}$) ولتكن (C(1;3)) ولتكن (B($\vec{a};\vec{j}$) ولتكن (B($\vec{a};\vec{j}$)


 - ب- عين إحـــداثيي النقطة \mathbf{G}_{α} بــدلالة α في حالة موجودة
 - $y{=}3x$ عين قيم α حتـــــى تكون النقطة \mathbf{G}_{α} تنتمي إلى المستقيم (D) الذي معادلته

التمرين الثالث(07ن):

الجزء الأول:

 $p(x) = -4x^3 + 3x^2 + 4x - 3$ الیکن p لیکن p

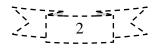
- p(x) جذر لکثیر الحدود $\alpha = 1$
- $\mathbf{p}(\mathbf{x}) = \mathbf{d}(\mathbf{x})(\mathbf{x} \mathbf{1})$: \mathbf{R} من \mathbf{x} کل $\mathbf{d}(\mathbf{x})$ عین کثیر الحدود $\mathbf{d}(\mathbf{x})$

$$p(x) = 0$$
 المعادلة \Re حل في

$$-4x^{2} + 3x + 4 \le \frac{3}{x}$$
 شكل جدول إشارة $p(x)$ ثم استنتج حلول المتراجحة -4

الجزء الثاني:

$$\mathbf{f}(\mathbf{x}) = -\mathbf{x}^4 + \mathbf{x}^3 + 2\mathbf{x}^2 - 3\mathbf{x} + 7$$
 التكن \mathbf{f} دالة معرفة على \mathbf{g} كما يلي: \mathbf{g} كما يلي: \mathbf{g} دالة معرفة على \mathbf{g} مستو منسوب إلى معلم متعامد و متجانس \mathbf{g} تمثيلها البياني في مستو منسوب إلى معلم متعامد و متجانس \mathbf{g}


- f' عين f' مشتقة الدالة
- 2- أدرس اتجاه تغير الدالة f ثم شكل جدول تغير اتها.
- .0 معادلة المستقيم (Δ) مماس المنحنى (C_f) عند النقطة ذات الفاصلة -3
 - 4- عين عدد نقط (C_{t}) التي يكون فيها معامل توجيه المماس يساوي 3- .

التمرين الرابع:

a=3cm مربع طول ضلعه a حيث a=3cm حيث ABCD مربع طول ضلعه a حيث أحسب بعدي المستطيل الذي محيطه هو نفس نفس محيط a=3cm .

انتمى

بالتوفيق للجميع

المحسدة : ساعت

المستوى: 2 ت ر

إختبار الموسم الاول في مادة الرياضيات

التمرين الاول (09 نقاط)

$$P(x) = x^3 - 6x^2 + 12x - 9$$
: المعرف كما يلي $P(x)$ المعرف كما يلي الحدود (12x - 9)

$$P(x)$$
ا تم عين تحليلا لـ $P(3)$

$$P\left(x\right)=0$$
 المعادلة \mathbb{R} على على 2

$$k(x) = \frac{2x-3}{x-2}$$
 و $h(x) = x^2 - 4x + 6$ يلي: کما يلي: که المعرفتين که المعر

و (C_k) و تمثيلاهما البيانيين في مستوي منسوب الى معلم متعامد ومتجانس ال (C_k)

$$\left(C_{k}
ight)$$
و $\left(C_{h}
ight)$ و النحنيين واصل نقط تقاطع المنحنيين

1 - 2 على الشكل النموذجي ثم اشرح كيفية رسم المنحنى انطلاقا من منحنى الدالة مربع
$$h\left(x\right)$$
 انطلاقا من منحنى الدالة مربع $\left(C_{h}\right)$

$$k\left(x\right)=2+rac{1}{x-2}$$
: قان $\mathbb{R}-\left\{2\right\}$ قان عن انه من اجل کل x من 3

أ - بين ان الدالم k مركبة من دالتين يطلب تعيينهما

$$]2,+\infty[$$
 و $]-\infty,2[$ بـ استنتج اتجاه تغير الدالم k على المجالين

$$g(x)=h(x+3)-3$$
 و $f(x)=|h(x)|$ نعتبر الدالتين $f(x)=h(x+3)$ و و

عن معلم آخر
$$\left(C_{g}\right)$$
 انطلاقا من المنحنى انشاء المنحنى المنحنى انشاء المنحنى انشاء المنحنى المنحنى

علم آخر
$$(C_f)$$
بدون رمز القيمة المطلقة ثم انشئ $f(x)$ هي معلم آخر $f(x)$

التمرين الثاني (05 نقاط)

التاليم: α عددا حقيقيا غير معدوم ولتكن المعادلة (E) ذات المجهول الحقيقي x التاليم:

$$\frac{3}{\alpha}x^2 - 4x + \alpha = 0 \dots (E)$$

1 - بين انه من اجل كل قيم lpha فان المعادلة (E) تقبل حلين متمايزين x_2 و x_2 لايطلب حسابهما

? وماذا تستنتج $x_1 \times x_2 \succ 0$ وماذا تستنتج

 x_2 و x_1 و مين قيمت α اذا علمت ان α اذا علمت ان α

إقلب الصفحت)

التمرين الثالث (06 نقاط)

و B نقطتان متمايزتان من المستوي و lpha عدد حقيقي غير معدوم A

G مرجحا $\{(A,2lpha),(B,lpha-3)\}$ مرجحا مين قيمة العدد الحقيقي lpha حتى تقبل الجملة

 $\{AB\}$ منتصف القطعة G ماهي قيمة العدد الحقيقي lpha حتى تكون النقطة G

 $\overrightarrow{AH} - 3\overrightarrow{AB} = \overrightarrow{0}$: 3 نقطة من المستوي تحققH

اثبت ان النقطة H هي مرجح النقطتين A و B المرفقتين بمعاملين يطلب تعيينهما

 $\left\|\overrightarrow{MA} + \overrightarrow{MB} \right\| = \left\| 2\overrightarrow{MA} - 3\overrightarrow{MB} \right\|$: عين مجموعة النقط M من المستوي حيث A

(إنـــهی)

أستاذ المادة: نبقج

الجمهورية الجزائرية الديمقراطية الشعبية

مديرية التربية لولاية الوادي

وزارة التربية الوطنية

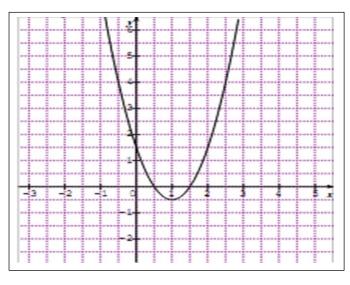
الإختبار الفصل الأول في مادة: **الرياضيات**

المدة:02 سا .

ثانوية هواري بومدين حاسي خليفة

السنة الدراسية 2017/2016 .

الشّعبة: ثانية تقني رياضي


التمرين الأول : (6ن)

إختر الإجابة الصحيحة مع التعليل

الإجابة (3)	الإجابة (2)	الإجابة (1)	السؤال
$(gof)(x) = \sqrt{x+1}$	$(gof)(x) = \frac{1}{x^2 - 1}$	$(gof)(x) = \frac{1}{x^2}$	و g دالتان معرفتان على f
	x^2-1	χ^2	$f(x) = x^4 - 1 : -]0; +\infty[$
			$g(x) = \frac{1}{\sqrt{x+1}} 9$
$S = \emptyset$	$S = \left\{ \frac{5}{4} \right\}$	$S = \{0\}$	حلول المعادلة :
	4		$\sqrt{x+1} = 2x - 1$
$S = \begin{bmatrix} \frac{5}{4} \\ \end{bmatrix}$	S = [1; 2]	$S =]-\infty;1]$	حلول المتراجحة
[4 ']			في المجال $\sqrt{x^2 - 1} \ge 2 - x$
]-∞;2]
			: دالة معرفة على $\mathbb R$ ب f
-3	-2	2	: فإن $f(x) = x^2 - 1$
			$\lim_{h \to 0} \frac{f(1+h)-f(1)}{h}$ تساوي

التمرين الثاني: (4ن)

دالة ثلاثي حدود من الدرجة الثانية معرفة على $\mathbb R$ بتمثيلها البياني كماهو مبين في الشكل التالي f

الأسئلة:

- . f عين من البيان جدول تغيرات الدالة
 - f(x) = 0: حل بيانيا المعادلة (2
 - g إستنتج رسم منحنى الدالة (3

g(x) = |f(x)| : حيث

التمرين الثالث: (4ن)

 $x^2+mx+m+3=0$: m نعتبر المعادلة ذات المتغير الحقيقي و الوسيط الحقيقي نعتبر

- . بين أن : $\Delta_m = (m-6)(m+2)$ بين أن : (1
- $x_1 \times x_2$ و $x_1 + x_2$ أدرس إشارة $x_2 \times x_1 \times x_2$ و $x_1 \times x_2 \times x_1 \times x_2$
 - (3) استنتج قيم m الحقيقية حتى تقبل المعادلة حلين موجبين تماما .

أقلب الصفحة

🖘 التمرين الرابع: (6ن)

في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(o;\vec{\imath};\vec{\jmath})$. نعتبر النقط A(-1;1) و في المستوي المنسوب إلى المعلم المتعامد والمتجانس G ، C(2;-3) و B(0;2) المثقلة B(0;2) و A(0;2) و A(0;2) المثقلة A(0;2) و A(0;2) و A(0;2) و A(0;2) و A(0;2)

- C علم النقط A و B
- . [CG] عنتصف القطعة H منتصف القطعة G و G ، ثم بين أن النقطة H منتصف القطعة (2
- $\|2\overrightarrow{MA} 3\overrightarrow{MB} \overrightarrow{MC}\| = 6$: نتكن (E) مجموعة النقط M من المستوي بحيث يكون (E) لتكن
 - $2\overrightarrow{MA}-3\overrightarrow{MB}-\overrightarrow{MC}=-2\overrightarrow{MH}$ ، من المستوي M من المستوي (أثبت أنه من أجل كل نقطة
 - ب) عين طبيعة المجموعة (E) ، ثم أنشئها .

الجمهورية الجزائرية الديمقراطية

السنة الدراسية 2017/2016 المدة :ساعتان

المؤسسة : ثانوية شريف يحي المستوى :2 ع ت /2ت ر

اختبار الفصل الأول في مادة الرياضيات

التمرين الاول: (06ن) لتكن الدالة f المعرفة على $R-\{-1\}$ كما يلي $R-\{x+1\}$ كما يلي $f(x)=\frac{3x}{x+1}$ كما يلي المستوي العنسوب

 $(0, \vec{i}, \vec{j})$ الى معلم متعامد ومتجانس

ليكن x' و x'' الحلان المتمايزان للمعادلة: $0=3x^2-2x+5=0$ و m عدد حقيقي

اختر الاجابة الصحيحة من بين الاجابات التالية مع التعليل

3	Z -4-12-81	الإجابه 1	السو ال
6x+3	3	-3	مشتقة الدالة f هي: = (x)
$(x+1)^2$	$(x+1)^2$	$(x+1)^2$	ر هي.
2	2 4-2 0 - 7 - 7	$\frac{1}{3}$	$h \frac{\lim f(2+h) - f(2)}{h} =$
$y = \frac{1}{3}x + \frac{4}{3}$	y = 2x + 2	$y = \frac{1}{3}x + 2$	(C_f) للمنحنى (T) المنحنى
		3	$x_0 = 2$ هي:
$x \rightarrow -2x+1$	$x \rightarrow -2x + \frac{1}{2}$	$x \to \frac{1}{2}x + 1$	$x \rightarrow \sqrt{x+1}$ احسن تقریب تالغی للدالة
2	_2	2	0 عندما x ينتهي الى 0 دون حساب x' و x' العبارة
	. 5	5	$\frac{1}{r'} + \frac{1}{r''} =$
$m \in R - \{1\}$	$m \in R - \{-1, 1\}$	$m \in R - \{-1\}$	يكون Gمرجح الجملة المثقلة
			اذا کان $\{(A;m^2);(B;m+1);(C;m)\}$

- من المستوي المستوي المستوي المستوي المستوي M نقطة كيفية من المستوي B ، A $\{(A,1)(B,2);(C;-1)\}$ مرجح الجملة $\{(A,1)(B,2)\}$ و النقطة G مرجح الجملة I
 - - . M مستقل عن النقطة $V = \overline{MA} + 2\overline{MB} 3\overline{MC}$ عن النقطة . 2 مستقل عن النقطة
- $\overrightarrow{V} = 3\overrightarrow{CI}$ أستنتج المساواة 3 $||\overline{MA} + 2\overline{MB}|| = ||\overline{MA} + 2\overline{MB} - 3\overline{MC}||$ 2. (E_1) and third in this space (E_1) and (E_1)

 $\overline{MA} + 2\overline{MB} = \frac{3}{2} \overline{MA} + 2\overline{MB} - \overline{MC}$ عين ثم انشئ مجموعة النقط (E_2) من المستوي حيث: اقلب الصفحة

تمرين الثالث: (08)

و BC الارتفاع المتعلق بالضلع BC و BC BC و BC BC الارتفاع المتعلق بالضلع BC هيث BC BC

A HP=HQ=x عنظتان من القطعة BC متناظرتان بالنسبة الى H نضع Q و Q Q متناظرتان من BC و A نقطة من B و A نقطة من B

$$MQ = \frac{18 - 3x}{2}$$
 بر هن أن (1

x مساحة المستطيل MNPQ بدلالة f(x) بدلالة (2

 $\left[0;6
ight]$ على المجال $\left[0;6
ight]$ و اعظ حصرا للعدد $\left[0;6
ight]$ على المجال المجاد على المجا

(4) اثبت أن الدالة f تقبل قيمة حدية عظمى ؛ ما هي قيمتها f

احسب بعدي المستطيل MNPQ بحيث تكون مساحته اكبر ما يمكن

 $g(x) = -x^4 + 18x + 4$ ب R بالمعرفة على g المعرفة على (6

g عين اشارة g(x)-g(x)ثم استنتج الوضعية النسبية لمنحنبي الدالتين f و g

h(x) = g(|x|)ب لتكن الدالة المعرفة على R بـ را R

• أبين أن h دالة زوجية

بین کیفیة رسم منحنی الدالة h انطلاقا من منحنی الدالة g

1-1822

- 1 - 18+4 - 7 + 18+4 - 16 + 18

ثانوية أول نوفمبر 54 بالعطاف

الاختبار الأول في مادة الرياضيات

السنة الدراسية 2016–2017

المدة: 2 سا

الشعبة: ثانية تقني رياضي +رياضيات

التمرين الأول 5ن

 $v(x) = \frac{1}{x}$ و u(x) = -x + 4: نعتبر الدالتين $v(x) = \frac{1}{x}$ و المعرفتين ب

.]- ∞ , 4[بالجال f علي المجال f علي المجال ...

.] مينتج اتجاه تغير الدالة \mathcal{S} على المجال] معرا.

g(x) بدلالة g(x) بدلالة

g . اثبت أن النقطة A(4,5) مركز تناظر للمنحني C_g الممثل للدالة . ج

التمرين الثاني 7ن

. 1 معادلة من الدرجة الثانية حيث معامل f(x) = 0 هو 1.

. f(x) = 0 عين عبارة f(x) علما أن : 1 = 1 و 4 عين عبارة $x_1 = 1$ علما أن : 1

 $P(x) = x^3 + (-6-a)x^2 + (13+3a)x + (a-14)$: گيڪن $P(x) = x^3 + (-6-a)x^2 + (13+3a)x + (a-14)$

P(x) عين العدد a حتي يكون a جذرا لـ a

a=2 بوضع •

P(x) أ. اكتب عبارة

 $P(x) = (x-3)(ax^2 + bx + c) : R$ من x عين الأعداد الحقيقية a,b,c بحيث من اجل ڪل عدد

P(x) استنتج تحليلا لكثير الحدود

 $P(x) \ge 0$ د. حل في R المتراجعة : 0

 $g(x) = x^5 - 5x^3 + 4x : 2x = g(x)$ 3.

g(x)=0 : غين S_1 مجموعة حلول المعادلة

g(x) ب. استنتج تحليلا لكثير الحدود

 $g(x) \ge 0$: عين S_2 مجموعة حلول المتراجعة

التمرين الثالث: 8ن

 $\mathcal{F}(x) = x + \alpha + \frac{\beta}{x+1} : -\{-1\}$ يعتبر الدالة g المعرفة على [-1]

 $\left(O;\vec{I};\vec{J}\right)$ وليكن $\left(C_{g}\right)$ الممثل للدالة g في المستوى المنسوب إلى معلم متعامد متجانس

-3 عين العددين الحقيقيين α و β بحيث المنحنى α يقبل عند النقطة α مماسا معامل توجيهه α

2as.ency-éducation.com

2. نعتبر الدالة f المعرفة على $\{-1\}$ $= \frac{x^2+3}{x+1}$ ب $= \frac{x^2+3}{x+1}$ المنحنى الممثل لها في المعلم السابق

 $f(x) = g(x): \mathbb{R} - \{-1\}$ من x من أجل كل عدد حقيقي أ.

 $f'(x) = \frac{(x-1)(x+3)}{(x+1)^2}$: $\mathbb{R} - \{-1\}$ من $f'(x) = \frac{(x-1)(x+3)}{(x+1)^2}$ ثم تحقق أنه من أجل كل عدد حقيقي

[-5;5] ج. أدرس اتجاه تغير الدالة f ثم سجل جدول تغير اتها على المجال

د. بین أن المنحني (C_f) يقبل مماسين يوازيان حامل محور الفواصل

 $f\left(0.0001
ight)$ ه. أكتب معادلة المماس (Δ) للمنحني (C_f) في النقطة A واستنتج قيمة مقربة للعدد

 $H(x) = \frac{x^2 + 3}{|x| + 1}$ يلي يكما يلي المعرفة على المعرفة على 3.

بين أن الدالة H زوجية ثم شكل جدول تغيراتها على المجال [5;5] دون در اسة تغيراتها

The state of the s

ثانوية أبي بكر الصديق العطاف

السنة الدراسية: 2018/2017

ـدة :ساعتين

المستوى: 2تر

اختبار الفصل الأول في مادة الرياضيات

المعرفة و القابلة للإشتقاق على المجموعة $\{-1:3\}$ بتمثيلها البياني $\{C\}$ الموضح في

التمرين الأول: 6نقاط

. $4x^2 - 5x + 1 = 0$: (E) تعطى المعادلة .1

أ. برر أن المعادلة (E) تقبل حلين x' و "x' من نفس الإشارة لا يطلب تعيينهما .

 $x^{14} + x^{114} + x^{12} + x^{12} = 2$

$$x''$$
 ج. نفرض آن: $\frac{1}{4} = \frac{1}{4}$ عین x''

$$p(x) = 4x^4 - 5x^2 + 1$$
 2.2. is in p(x) is $p(x) = 0$ is $p(x) = 0$. is $p(x) = 0$.

أ. حل في \mathbb{R} المعادلة p(x) ، ثم حلل p(x) إلى جاء عوامل من الدرجة الأولى $p(x) \le 0$ واستنتج حلول المتراجعة p(x) ، واستنتج

التمرين الثاني: 4 نقاط

(o,i,j)نزود المستوي بمعلم متعامد و متجانس

C(2,2) ; B(2,-3) ; A(-1,1) لتكن النقط

عين احداثيي النقطة I مركز ثقل المثلث ABC

 $\{(A,-1);(B,1);(C,3)\}$ عين احداثيي النقطة G مرجح الجملة المثقلة

عين (Δ) مجموعة النقط M من المستوي حيث : $\|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\| = \|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\|$ وأنشئها.

التمرين الثالث:10نقاط

نعتبر الدالة العددية

الوثيقة المرافقة. بقراءة بيانية:

f الدالة f

.2

 $\mathbb{R} - \{-1,3\}$ عين إشارة كل من f'(x) و f'(x) على

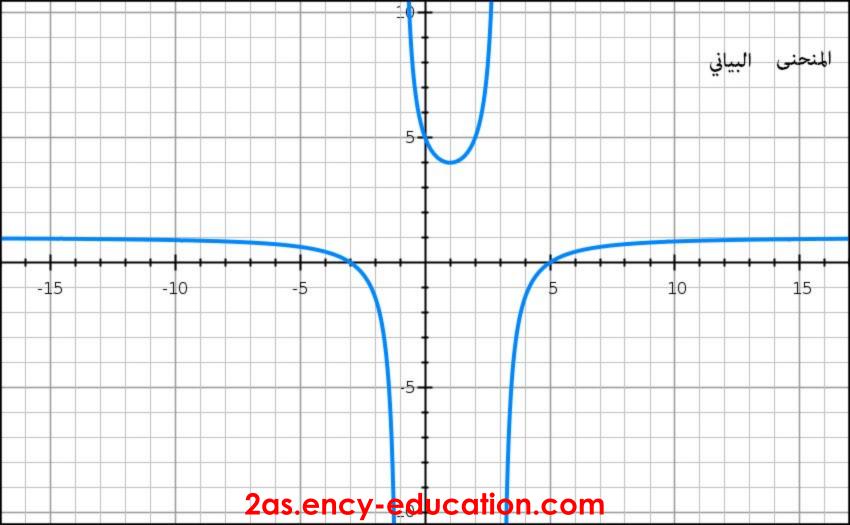
 $g(x) = \frac{1}{f(x)}$ نعتبر الدالة g المعرفة كما يلي:

أ. عين مجموعة تعريف الدالة g

g بدلالت g'(x) بو احسب g'(x) بدلالت g'(x) بدلالت و بدلال

نفرض أن عبارة (x) عددان حقيقيان) نفرض أن عبارة (x) عددان حقيقيان)

f(1) و f(0) جد بیانیا کل من: .1/


استنتج قيمت كل من العددين a و b

 $f(x) = \frac{x^2 - 2x - 15}{x^2 - 2x - 3} : \mathbb{R} - \{-1, 3\}$ تحقق أنه من أجل كُل عدد حقيقي x مَن .3

> احسب f'(x) بدلالت x ثم ادرس اشارته :4

المنعنى النقطة المرافقة a=-3 المنعنى النقطة المرافقة 5 9 (C) أثبت أن المستقيم ذو المعادلة x=1 محور تناظر للمنحنى .60

2as.<u>ency-education</u>.com

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

السنة الدراسية: 2018/2017

المسدة: 7200 ثانية

مديرية التربية لولاية تمنغست - ثانوية الشيخ أمود

المستوى: الثانية ثانوي شعبتي الرياضيات و الرياضيات تقني

اختبار الثلاثي الأول في مادة الرياضيات

التمرين الأول (5 نقاط):

 $P(x) = x^3 - 4x^2 + x + 6$ ليكن P(x) كثير حدود حيث P(x)

- با أحسب P(3) ماذا تستنتج ?
- . حلل P(x) الى جداء عوامل من الدرجة الأولى .
- . P(x)=0 التالية x المعادلة ذات المجهول x التالية R المعادلة ذات المجهول x التالية x
- $P\left(\frac{2018}{1439}\right)$ مل في مجموعة الأعداد الحقيقية R المتراجحة ذات المجهول x التالية $P(x) \geq 0$ ثم استنتج إشارة (4

التمرين الثاني (6 نقاط):

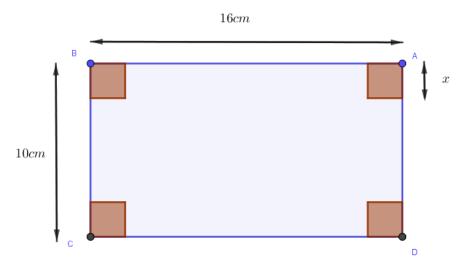
في المستوي المنسوب الى المعلم المتعامد المتجانس نعتبر النقط A(1;3) و B(-3;-1) و لتكن B مركز ثقل المثلث $\overrightarrow{DA}-\overrightarrow{DB}+\overrightarrow{DC}=\overrightarrow{0}$ معرفة بالعلاقة D معرفة بالعلاقة D

- C علم النقط A و B و C
- $D_{\mathfrak{g}}$ عين احداثيات النقطتان G
- 3) بين ان الرباعي متوازي أضلاع ABCD.
- بين أن النقط B و G و استقامية.
- $\|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\| = 3 \|\overrightarrow{MA} \overrightarrow{MB} + \overrightarrow{MC}\|$ من المستوي حيث $\|\overrightarrow{MA} + \overrightarrow{MC}\| = 3 \|\overrightarrow{MA} \overrightarrow{MB} + \overrightarrow{MC}\|$ عين ثم أنشئ المجموعة E عين ثم أنشئ المجموعة E
 - $\|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\| = 3 \|\overrightarrow{MA} \overrightarrow{MB}\|$ من المستوي حيث $\|\overrightarrow{MA} + \overrightarrow{MB}\| = 3 \|\overrightarrow{MA} \overrightarrow{MB}\|$ عين ثم أنشئ المجموعة F .

التمرين الثالث (5 نقاط):

دالة معرفة على \mathbb{R} بالعبارة $f(x)=\frac{-x^2+ax+b}{x^2+1}$ حيث $f(x)=\frac{-x^2+ax+b}{x^2+1}$ تشيلها البياني في معلم متعامد متجانس .

الجزء الاول:


-1 عين العددان a علماً أن (C_f) يقبل في النقطة A(1;-3) مماسا معامل توجيهه يساوي .

$$b=1$$
 , $a=-6$ الجزء الثاني : نضع

- . f أدرس اتجاه تغير الدالة f
- $\left[0;1
 ight]$ عين حصر للدالة f على المجال (2
- $(10^{-2}$ عين القيم الحدية المحلية للدالة f للدالة (3
- .0 أكتب معادلة الماس للمنحني (C_f) عند النقطة ذات الفاصلة (4

التمرين الرابع (4 نقاط)

انطلاقا من مستطيل بعداه 16; 10 بالسنتيمترات نصنع علبة على شكل متوازي مستطيلات قائم بالكيفية التالية: من كل ركن من أركان المستطيل نقطع مربعا طول ضلعه يساوي x ثم نرفع الجوانب بالطي كما هو موضح في الرسم. حدد قيمة x ليكون حجم العلبة أكبر ما يمكن

مع تمنيات الاستاذ : جواليل أحمد - بالتوفيق و النجاح

التصحيح المفصل للاختبار الثلاثي الأول في مادة الرياضيات

التمرين الأول (5 نقاط):

$$P(x) = x^3 - 4x^2 + x + 6$$
 ليكن $P(x)$ كثير حدود حيث $P(x)$

$$P(x) \perp P(3) = 3^3 - 4(3^2) + 3 + 6 = 27 - 36 + 9 = 0$$
 evaluation $P(3) = 3^3 - 4(3^2) + 3 + 6 = 27 - 36 + 9 = 0$ where $P(3) = 3^3 - 4(3^2) + 3 + 6 = 27 - 36 + 9 = 0$

الى جداء عوامل من الدرجة الأولى بطريقة هونر نشكل الجدول التالي
$$P(x)$$

	1	- 4	1	6
3	0	3	-3	- 6
	1	- 1	-2	0

و منه نجد

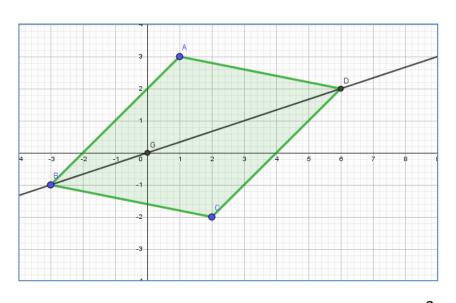
$$P(x) = (x-3)(x+1)(x-2) \quad \text{of} \quad (x^2-x-2) = (x+1)(x-2) \quad P(x) = (x-3)(x^2-x-2)$$

(3) حل في مجموعة الأعداد الحقيقية
$$x$$
 المعادلة ذات المجهول x التالية $y(x)=0$ يكافئ $y(x)=0$ يكافئ $y(x)=0$ على المعادلة ذات المجهول $y(x)=0$ المعادلة ذات المعادلة ألم المعادل

$$P(x)$$
 المتراجحة ذات المجهول x المتراجحة ذات المجهول x المتراجحة ذات المجهول x المتراجحة ذات المجهول x ندرس اشارة (4

x	-∞ -	1 2	2 3	3 +∞
(x-3) اشارة		_	_ () <u>+</u>
(x+1)(x-2) اشارة	+	0 _ () <u>+</u>	+
P(x) اشارة	_ () <u>+</u>	<u> </u>	0 <u>+</u>

 $S' = [-1;2] \cup [3;+\infty[$ من الجدول نستنتج حلول المتراجحة هي


$$P\left(\frac{2018}{1439}\right) \ge 0$$
 فإن $1 \le \left(\frac{2018}{1439}\right) \le 2$ أن $1 \le \left(\frac{2018}{1439}\right) = 1.4$ فإن $1 \le \left(\frac{2018}{1439}\right) = 1.4$

. عدد موجب $P\!\!\left(\frac{2018}{1439}\right)$ عدد موجب

التمرين الثاني (6 نقاط):

$$C$$
 و B و A النقط (1

$$\begin{cases} x_G = \frac{x_A + x_B + x_C}{3} \\ y_G = \frac{y_A + y_B + y_C}{3} \end{cases}$$
 visible in the property of th

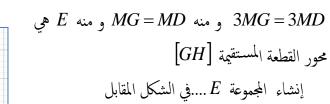
$$G\left(0;0\right)_{Q_{G}} = 0 \begin{cases} x_{G} = 0 \\ y_{G} = 0 \end{cases} \begin{cases} x_{G} = \frac{1-3+2}{3} \\ y_{G} = \frac{3-1-2}{3} \end{cases}$$

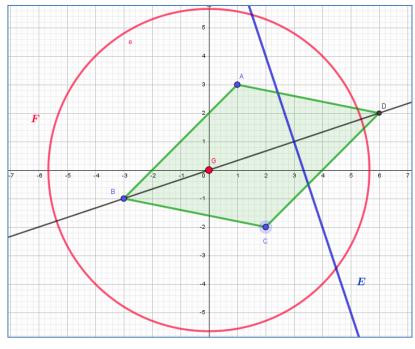
لدينا $\{(C;1),(B;-1),\;(A;1)\}$ مرجح الجملة $\{(C;1),(B;-1),\;(A;1)\}$ و منه لدينا

$$.D(6;2) \qquad \begin{cases} x_D = 0 \\ y_D = 2 \end{cases} \begin{cases} x_D = 1 + 3 + 2 \\ y_D = 3 + 1 - 2 \end{cases} \begin{cases} x_D = \frac{x_A - x_B + x_C}{1 - 1 + 1} \\ y_D = \frac{y_A - y_B + y_C}{1 - 1 + 1} \end{cases}$$

3) تبين ان الرباعي متوازي أضلاع ABCD

لدينا
$$\overrightarrow{AB} = \overrightarrow{DC}$$
 ائي $\overrightarrow{AB} = \overrightarrow{DC}$ فالرباعي $\overrightarrow{AB} = \overrightarrow{DC}$ متوازي اضلاع لدينا


[AC] بين أن النقط B و G و D في إستقامية : لتكن H منتصف القطعة المستقيمة (4


الدينا G مركز ثقل المثلث ABC أي اG مرجح الجملة $\{(B;1), (H;2)\}$ حيث و منه G التمي الى المستقيم (1).....(BH)

يعني ان D مرجح الجملة $\left\{ \left(B;-1\right) ,\,\left(H;2\right) \right\}$ و منه D تنتمي الى المستقيم D يعني ان D مرجح الجملة D مرجح الجملة D و منه D يعني الى المستقيم (2).....(BH)

من (1) و (2) نستنتج أن (2) و (3) من (1)

ن لتكن
$$M$$
 من المستوي حيث $\|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\| = 3 \|\overrightarrow{MA} - \overrightarrow{MB} + \overrightarrow{MC}\|$ تعني أن (5) لتكن M التكن عبموعة النقط المستوي حيث M من المستوي حيث M تعني أن

لتكن
$$F$$
 مجموعة النقط M من المستوي حيث M لتكن F مجموعة النقط M من المستوي حيث $MA + \overline{MB} + \overline{MC} \parallel = 3 \parallel \overline{MA} - \overline{MB} \parallel$ يعني ان $MA + \overline{BM} \parallel \overline{MA} + \overline{BM} \parallel$ أي ان $MG = BA$ و مركزها $MG = BA$ انشاء المجموعة $MG = BA$ الشكل المقابل المقابل

التمرين الثالث (5 نقاط):

الجزء الاول:

تعين العددان a علماً أن (C_f) يقبل في النقطة A(1;-3) مماسا معامل توجيهه يساوي b , a تعين العددان

$$a+b=-5$$
.....(1) ایعني ان $a+b=-3$ ای ان $a+b=-3$

و منه
$$f'(x) = \frac{(-2x+a)(x^2+1)-2x(-x^2+ax+b)}{(x^2+1)^2}$$
 و لدينا $f'(1) = -1$

$$-2-2b = -4 \quad \text{ (a)} \quad \frac{-a + \left(-2 - 2b\right) + a}{4} = -1 \qquad \text{ (b)} \quad f'(x) = \frac{-ax^2 + \left(-2 - 2b\right)x + a}{\left(x^2 + 1\right)^2}$$

a=-6 أي ان b=1 بالتعويض في b=1

الجزء الثاني :

دراسة اتجاه تغير الدالة
$$f'(x) = \frac{-ax^2 + (-2 - 2b)x + a}{(x^2 + 1)^2}$$
 التعويض نجد (1

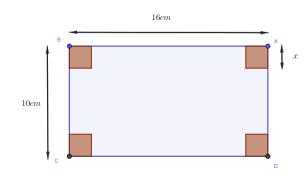
و منه لـ
$$\Delta = 160$$
 خسب المميز $\Delta = 160$ و منه لـ $\Delta = 160$ خسب المميز $\Delta = 160$ و منه لـ $\Delta = 160$ و منه لـ $\Delta = 160$

$$\begin{cases} x' = \frac{4 + 4\sqrt{10}}{12} = \frac{1 + \sqrt{10}}{3} \\ x' = \frac{4 + 4\sqrt{10}}{12} = \frac{1 + \sqrt{10}}{3} \end{cases}$$
 و منه f' موجبة على المجالين
$$\begin{cases} x' = \frac{4 + 4\sqrt{10}}{12} = \frac{1 + \sqrt{10}}{3} \\ x'' = \frac{4 - 4\sqrt{10}}{12} = \frac{1 - \sqrt{10}}{3} \end{cases}$$

$$\left[\frac{1-\sqrt{10}}{3};\frac{1+\sqrt{10}}{3}\right]$$
 و f' سالبة على المجال f' و $\left[\frac{1+\sqrt{10}}{3};+\infty\right[$

$$\left[\frac{1+\sqrt{10}}{3};+\infty\right[_{g}\right]-\infty;\frac{1-\sqrt{10}}{3}$$
 و منه f متزایدة علی هذین المجالین

$$\left[rac{1-\sqrt{10}}{3};rac{1+\sqrt{10}}{3}
ight]$$
 و f متناقصة على هذا المجال f


تعين حصر للدالة
$$f$$
 على المجال $f(1) \le f(x) \le f(0)$ الدالة f متناقصة تماما على هذا المجال و منه $f(1) \le f(x) \le f(x)$ أي ان $f(1) \le f(x) \le f(x)$ أي ان $f(1) \le f(x) \le f(x)$ أي ان $f(1) \le f(x) \le f(x)$

$$f\left(\frac{1+\sqrt{10}}{3}\right) = -3.16$$
 و يعين القيم الحدية المحلية للدالة $f\left(\frac{1-\sqrt{10}}{3}\right) = 3.16$ قيمة حدية محلية صغرى .

با ان
$$y=f'(0)x+f(0)$$
 هي $y=f'(0)x+f(0)$ عند النقطة ذات الفاصلة 0 هي (4

$$y = 6x + 1$$
 فإن $f'(0) = 6$, $f(0) = 1$

التمرين الرابع (4 نقاط)

بعد عملية الطبي و القص نحصل على علبة ارتفاعها هو x عرضها هو 10-2x و بعد عملية الطبي و القص نحصل على علبة ارتفاعها هو x عرضها هو x عرضها هو x علبة العلبة طولها هو x علبة الطبة العابة الطولها هو x علبة العابة العابة الطولها هو x علبة الطوله الطولها هو x علبة الطولها هو x الطولها هو x علبة الطوله الطولها هو x علبة الطوله ا

$$v(x) = x(10-2x)(16-2x)$$

أي ان
$$v(x) = 4x^3 - 52x^2 + 160x$$
 و منه $v(x) = x \left(160 - 52x + 4x^2\right)$

[0; 5]ندرس تغيرات الدالة ν على المجال

$$v'(x) = 12x^2 - 104x + 160$$

$$x'=rac{104+56}{24}=rac{160}{24}=rac{20}{3}$$
 کسب المميز $\Delta=3136$ کسب المميز $\Delta=3136$ جموعة التعريف $\Delta=3136$

و الثاني 2 داخلها مقبول

و منه الدالة
$$v$$
 متزايدة على المجال v [0; 2] و متناقصة على v و منه الدالة v متزايدة على المجال v أي ان v أي المطلوبة هي v ألتيمة المطلوبة هي v

x	0	2	5
v'(x)	+	0	_
v(x)	0	144	0

السنة الدراسية: 2017-2018

اختبار الفصل الأول في مادة الرياضيات

القسم: 2 ع ت - 2 ت ر

التمرين الأول: (07 نقاط)

عين الإجابة الصحيحة من بين الإجابات المقترحة مع التبرير

الجواب 3	الجواب 2	الجواب 1	
I ثابتة على أ	متناقصة تماما f	متزايدة تماما f	الدالة $f(x) = \sqrt{3-x}$ المعرفة على
	على 1	على 1	$I =]-\infty,3]$
(C) غير متناظر	متناظر بالنسبة (C)	(C) متناظر بالنسبة إلى	\Box الدالة $g(x) = \frac{x^3}{x^2 + 1}$ المعرفة على
	O إلى المبدأ	محور التراتيب	$x^{-}+1$ و (C) تمثيلها البياني في المعلم (C)
$f'(x) = x - \frac{x+1}{2x\sqrt{x}}$	$f'(x) = \frac{x+1}{2x\sqrt{x}}$	$f'(x) = \frac{1}{\sqrt{x}} - \frac{x+1}{2x\sqrt{x}}$	f الدالة المشتقة للدالة
$2x\sqrt{x}$	$2x\sqrt{x}$	\sqrt{x} $2x\sqrt{x}$	$f(x) = \frac{x+1}{\sqrt{x}}$ ھي
تقبل قيمتين حديتين	تقبل قيمة حدية على 🏿	لا تقبل قيم حدية على 🏿	الدالــة f المعرفــة علــى 🛘 بــــ
على 🏻 .			$f(x) = x^3 + x^2 - x + 5$

التمرين الثاني: (06 نقاط)

ABC مثلث متقايس الأضلاع

- $\{(A,2);(B,1);(C,1)\}$ مرجح الجملة المثقلة G مرجح الجملة المثقلة
- $||\overline{2MA} + \overline{MB} + \overline{MC}|| = \sqrt{32}$ عين ثم أنشئ (E_1) مجموعة النقط من المستوي بحيث -2
 - $\{(A,3);(B,-1);(C,2)\}$ مرجح الجملة D مرجح النقطة D

 $2MA + \overline{MB} + \overline{MC}$ | $3MA - \overline{MB} + 2\overline{MC}$ | = عين (E_2) عين مجموعة النقط من المستوي بحيث

التمرين الثالث: (07 نقاط)

. 4 يضم صندوق 5 كرات متشابهة مرقمة من 0 إلى

- 1) نسحب على التوالي كرتين بدون إرجاع حيث لا نرجع الكرة الأولى إلى الصندوق و نسجل مجموع رقميهما . أ) بيّن أن أصغر وأكبر نتيجتين يمكن الحصول عليهما هما 1 و 7 على الترتيب .
 - (2000) ب) عين المجموعة الكلية Ω (يمكن إنشاء جدول أو شجرة الاحتمالات
 - 2) أ) ما هو عدد الطرق للحصول على 5 ؟
 - $\frac{1}{5}$ بين أن احتمال الحصول على 5 هو
 - ج) عين قانون الاحتمال

انتهى- بالتوفيق

2as.ency-education.com

الجمهورية الجزائرية الديمقراطية الشعبية

وزارة التربية الوطنية

السنة الدراسية : 2017- 2018	مديرية التربية لولاية الأغواط
المستوى: سنة ثانية تقني رياضي	ثانوية غزاوي بلقاسم بآفلو
التاريخ : 05 ديسمبر 2017	إمتحان الثلاثي الأول
المدة : ساعتان	إختبار في مادة الرياضيات

النَّمرين الأول : 12 نقاط

الجزء الأول : 04 نقاط

لتكن الدالة g المعرفة على \mathbb{R} بـ : x^2-x ب g ب g أمثيلها البياني في المستوي المنسوب إلى معلم متعامد ومتجانس $\|\vec{i}\|=2cm$. الوحدة

- $g(x) = \left(x \frac{1}{2}\right)^2 \frac{1}{4}$: ققق أنه من أجل كل عدد حقيقي x أن x
 - 2) فكك الدالة g إلى مركب دالتين يطلب تعيينهما .
 - . $\left\lceil \frac{1}{2}; +\infty \right\rceil$ و $\left\rceil -\infty; \frac{1}{2} \right\rceil$ على الجالين g على الجالين (3)
- $x\mapsto x^2$ بين كيفية إنشاء المنحنى $\left(C_g
 ight)$ من خلال التمثيل البياني للدالة (4
- . نعتبر الدالة h(x)=g(|x|) , بين أن الدالة h زوجية ثم وضح كيفية إنشاء منحناها البياني (5

الجزء الثاني : 04 نقاط

. $P(x) = 2x^3 + 3x^2 - 5$ بـ \mathbb{R} بـ الحدود المعرف على المجموعة \mathbb{R} بـ الحدود المعرف على المجموعة المحدود المعرف على المجموعة المحدود المعرف على المحدود المعرف المحدود المحد

- P(x) جذر ك $x_0 = 1$ خقق أن
- . P(x) = (x-1)Q(x): غين كثير الحدود Q(x) غين كثير الحدود
- . $P\!\left(rac{2018}{1439}
 ight)$ و المتراجحة $P\!\left(x
 ight) \! \geq \! 0$ على المعادلة \mathbb{R} و المتراجحة $P\!\left(x
 ight) \! \geq \! 0$

الجزء الثالث : 04 نقاط

. $f(x) = \frac{x^3 - x + 4}{x + 1}$: كما يلي $D_f = \begin{bmatrix} -2; -1 \end{bmatrix} \begin{bmatrix} -1; 3 \end{bmatrix}$ كما يلي الجموعة العرفة على العرفة على الجموعة العرفة على ال

- . $f'(x) = \frac{(x-1)(2x^2+5x+5)}{(x+1)^2}$: بين أنه من أجل كل عدد حقيقي x من الجموعة D_f من الجموعة -1
 - . إستنتج إلجّاه تغير الدالة f . ثم شكل جدول تغيراتها .
 - . افسر النتيجة بيانيا . $\lim_{h o 0} \frac{f\left(1+h\right)-f\left(1\right)}{h}$: عين دون حساب -
 - . $x_0=0$ غند النقطة ذات الفاصلة أكتب معادلة للمماس
 - . $\lceil f(x) g(x) \rceil$: أدرس إشارة الفرق -2
 - . g المثل للدالة المثل $\left(C_{g}
 ight)$ بالنسبة إلى المثل للدالة إستنتج وضعية المنحنى

إقلب الصفحة

صفحة 1 من 2

2as.ency-education.com

النَّمرين الثاني : 08 نقاط

C(4;2), B(3;-1) , A(1;3) نعرف النقط $\left(o;\vec{i};\vec{j}
ight)$ نعرف النسوب إلى معلم متعامد ومتجانس

. وسيط حقيقي $G=\left\{\left(A;m^2-4
ight);\left(B;2-m^2
ight);\left(C;m^2-2
ight)
ight\}$ ليكن G مرجح الجملة الثقلة

- . G ناقش حسب قيم الوسيط الخقيقي m وجود المرجح (1
 - m=1 بأخذ (2
 - \overrightarrow{AC} ۽ \overrightarrow{AB} بدلالة \overrightarrow{AG} ۽ أكتب عبارة
 - . G عين إحداثيات المرجح
 - $\overrightarrow{AH} = \frac{-1}{2}\overrightarrow{AB}$: لتكن H نقطة من المستوي حيث (3
- . بين أن H مرجح النقطتين A و B بعاملات يطلب تعيينها .
 - $_{\cdot}H_{\,\,\mathrm{g}}G$ مثل النقط $_{\cdot}A$ و $_{\cdot}C$ ثم أنشئ كل النقطتين مثل النقط مثل مثل النقط مثل مثل مثل النقط مثل مث
- . بين أن المستقيمين (AB) و (GC) متقاطعين وفق نقطة يطلب تعيينها (4
 - نقطة من المستوى . نعتبر الجموعتين (δ_1) و (عيث (5 لتكن $\delta_2)$

$$(\delta_1): \|3\overrightarrow{MA} - \overrightarrow{MB} + \overrightarrow{MC}\| = \|\overrightarrow{MB} - \overrightarrow{MC}\|$$
$$(\delta_2): \|3\overrightarrow{MA} - \overrightarrow{MB}\| = \|\overrightarrow{MB} + \overrightarrow{MC}\|$$

- . $\left(\delta_{\scriptscriptstyle 1}
 ight)$ نتمى إلى الجموعة A تنتمى الى الجموعة أ-
 - (δ_2) و (δ_1) و الجموعتين أنشئ الجموعتين أ

------ إنتهى ------

(إن وقوعك في الخطأ ليست مشكلة ... لا للقلق ... فالمشكلة هي عدم تدارك الخطأ مستقبلا ... كن إيجابيا .)

بالتوفيق والنجاح أستاذ المادة : نوقبة نورالدين

صفحة 2 من 2

الجمهورية الجزائرية الديمقراطية الشعبية

مديرية التربية لولاية الوادي

وزارة التربية الوطنيّة

إختبار الفصل الأول في مادة: الرياضيات

المدة:02 سا

ثانوية هواري بومدين حاسي خليفة

السنة الدراسية 2018/2017 .

الشّعبة: ثانية تقني رياضي

♦ التمرين الأول : (8ن)

- و ر (C_f) و المقابل المقابل المقابل المقابل $f(x)=rac{ax+b}{x-1}$ ب المقابل المقاب
 - $f(-1)\,,f(0)$ عين بيانيا كلا من (1
 - . $f(x) = \frac{x+1}{x-1}$: بين من المعطيات السابقة أن (2
 - . f(x) عدد في جدول إشارة
 - . f شكل جدول تغيرات الدالة f
 - II) نعتبر الدوال التالية المعرفة كمايلي :
 - h(x) = |f(x)| g(x) = f(|x|)
 - بین أن g زوجیة , ثم إشرح کیف یمکن (1 رسم (\mathcal{C}_g) .
 - . (C_h) و (C_g) انشئ (2
 - $f_n(x) = f \circ f \circ \dots \circ f(x)$
- : المعرفة كمايلي (III) نعتبر الدالة f_n المعرفة كمايلي ($f_2(x)=f\circ f(x)=x$) بين أن (1
 - . $f_n(x)$ أحسب n العبارة n أحسب قيم العدد الطبيعي n أحسب $f_3(x)$ أحسب (2

♦ التمرين الثاني: (6ن)

 $(o; \vec{\imath}; \vec{\jmath})$ ، A(-1; 4) المستوي منسوب إلى معلم متعامد ومتجانس $(o; \vec{\imath}; \vec{\jmath})$. نعتبر النقط

- C(5;-2)
- 1) علم النقط A ، A علم النقط
- $\{(A;1),(C;1)\}$ أحسب إحداثيي النقطة $\{(A;1),(C;1)\}$ مرجح الجملة المثقلة
- . $\{(A;1),(B;-4),(C;1)\}$ مرجح الجملة المثقلة (3
 - . G أحسب إحداثيي النقطة
- $\|\overrightarrow{MA} 4\overrightarrow{MB} + \overrightarrow{MC}\| = \|\overrightarrow{MA} + \overrightarrow{MC}\|$ لتكن (E) لتكن (A) مجموعة النقط M من المستوي بحيث
 - و $\overrightarrow{MA}-4\overrightarrow{MB}+\overrightarrow{MC}=-2\overrightarrow{MG}$: بين أنه من أجل كل نقطة M من المستوي فإن $M\overrightarrow{A}+\overrightarrow{MC}=2\overrightarrow{MH}$. $\overrightarrow{MA}+\overrightarrow{MC}=2\overrightarrow{MH}$
 - . G بين أن M تنتمي إلى المجموعة (E) ، يعنى أن النقطة M متساوية البعد عن
 - ج) إستنتج طبيعة المجموعة (E) وأرسمها.

أقب الصفحة

♦ التمرين الثالث: (6ن)

- . $f(x) = -2x^3 + ax + b$: و a عددان حقیقیان و a (a
 - . f(0)=5 و f(x) عين a و b عين a عين a عين a
- . f(x) = (x+2)g(x) : حيث g(x) , g(x) أوجد عبارة $a = \frac{21}{2}$ نضع $a = \frac{21}{2}$
 - f(x) عين كل جذور (3
- ال التكن المعادلة $x^2 (2m+3)x + m^2 2 = 0$: (E) التكن المعادلة المعادلة $x^2 (2m+3)x + m^2 2 = 0$ الحقيقي $x^2 (2m+3)x + m^2 2 = 0$.
 - . (E) عين قيم m حتى يكون 1 حلا للمعادلة