الإجابة النموذجية لموضوع امتحان بكالوريا دورة: 2014

المدة: 04 ساعات ونصف

اختبار مادة: الرياضيات الشعبة: تقني رياضي

العلامة		7 1- NN -1:- (t \$N - : : t)
مجموع	مجزأ	(الموضوع الأول) عناصر الإجابة
	4 0 0 5	التمرين الأول: (05.5 نقطة) 1) حل المعادلة:
	4x0.25	$z_3 = i_3$ $z_2 = \sqrt{3} - i_3$ $z_1 = \sqrt{3} + i$ $\Delta = (2i)^2$
	01	
	0.5	$\mathbb N$ ب) ب $e^{i\left(rac{z_1}{3} ight)^n}$ برن معناه $e^{i\left(rac{n\pi}{3} ight)}$ برن نخیلی صرف معناه کا با کا نخیلی معناه کا با کا نخیلی التحالی کا با کا نخیلی التحالی کا با کا نخیلی التحالی کا با کا
	0.25	3+6k لأن $2n$ زوجي و $3+6k$ فردي ومنه لا يوجد أي عدد طبيعي يحقق المطلوب
05.5	0.5	$ \frac{z_3 - z_1}{z_2 - z_1} = -\frac{\sqrt{3}}{2}i = \frac{\sqrt{3}}{2}e^{i\left(-\frac{\pi}{2}\right)} \text{ (i (3))} $
	0.5	$-\frac{\pi}{2}$ الزاوية ($z'=-\frac{\sqrt{3}}{2}iz+\frac{\sqrt{3}}{2}+\frac{5}{2}i$ النسبة $z'-z_1=\frac{\sqrt{3}}{2}e^{i\left(-\frac{\pi}{2}\right)}(z-z_1)$
	0.5	ب) المثلث ABC قائم في A ، مع قبول أي تبرير صحيح
	0.75	$r=rac{\sqrt{7}}{2}$ أي (E) هي الدائرة التي مركزها $\omega\left(rac{\sqrt{3}}{2};1 ight)$ ونصف قطرها ونصف ألك (E
	0.5	(E') هي محور القطعة $[AC]$ (أو معادلة (E') هي محور القطعة (E')
		<u>التمرين الثاني</u> : (04.5 نقط)
	0.5	B(1;0;2) و $t=-1$ و $t=-1$ أ) بحل الجملة نجد $t=-1$ و $t=-1$
	0.5	$\begin{cases} x = 1 + 2t \\ 0 = t $
	0.5	$(P):\begin{cases} x=1+2t \\ y=-2t-t'; (t;t') \in \mathbb{R}^2 \end{cases} $ $z=2-t+2t'$
		$16-1\pm 2t$
04.5	0.5	المستوي (P) ، لأن الجملة $A(6;4;4)$ ليس لها حل. $A(6;4;4)$ ليس لها حل. $A(6;4;4)$
		(Δ_2) و (Δ_1) و (Δ_1) میث (Δ_2) میث (Δ_1) معاعا نوجیه (Δ_1) و (Δ_2) ب (Δ_1) ب (Δ_2) ب (Δ_1) و (Δ_1)
	0.5	(P) إذن B هي المسقط العمودي للنقطة A على المستوي (P)
	0.5	(Q):5x+y-7z-6=0 (1)
	0.5	C(3;-2;1) و $C(3;-2;1)$ و $C(3;-2;1)$
04.5	0.5	(C) ون (P) هي المسقط العمودي للنقطة (Q) على المستوي (P) هي المسقط العمودي للنقطة (Q) المستوي (Q) المستوي (Q)

01	$W(ABCD) = \frac{15}{2} uv$ ، B قائم في BCD (أ (4
	$=\frac{3\times\frac{15}{2}}{\sqrt{3}}=\frac{15\sqrt{3}}{2}ua$ ومنه $S(ACD)=\frac{3\times V(ABCD)}{d(B,(Q))}$ (ب)
	التمرين الثالث: (04 نقط)
0.5]2;+∞[و $f(x)-x<0$ في $f(x)-x<0$ في $f(x)-x<0$
على [1;2]	و متناقصة تماما على $x-2$ و متناقصة تماما f ، $f'(x)=rac{x-2}{x-1}$ و متناقصة تماما
$0.5 \qquad 2 = f(2) \le f(x) \le$	$f(e+1) = e$ ومنه $2 \le x \le e+1$ ، $[2;e+1]$ ومنه $f(e+1)$
	. محقق $u_0 \in [2;e+1]$ (1 (II
0.75 پڌن u_{n+1}	$=f\left(u_{n} ight)\in\left[2;e+1 ight]$ نفرض $u_{n}\in\left[2;e+1 ight]$ ومنه ،حسب $u_{n}\in\left[2;e+1 ight]$
u_{n+1}	$u_n \le 0$ ويما أن $u_n \in [2;e+1]$ فإن $u_{n+1} - u_n = f(u_n) - u_n$ (2
0.5	ومنه $\left(u_{n} ight)$ متناقصة
0.5	متناقصة ومحدودة من الأسفل (بالعدد 2) فهي متقاربة (u_n)
0. 5	$I=2$ بفرض $I=I$ فإن $I=f\left(I\right)$ بفرض في $\lim_{n\to +\infty}u_n=I$ بفرض
	التمرين الرابع: (06 نقط)
0.25	$\lim_{x \to 0} g(x) = 0 \ (1(I)$
0.25	$g'(x) = 2 + \ln x$
0.25	$0 - e^{-2} + 3 : g'(x)$ اشارة $g'(x)$
0.25	$g(e^{-2}) = -e^{-2}$ و $g(3) = 3 + 3\ln 3$
0.25	$\left[0;e^{-2} ight]$ ومنه المعادلة $g\left(x ight)$ لا تقبل حلّا في $\left[0;e^{-2} ight]$ (أ $\left(2 ight)$
0.25 $e^{-2};3$ المجال e^{-2}	. و مستمرة ومتزايدة تماما على $\left[e^{-2};3+3\ln3 ight]$ و $\left[e^{-2};3+3\ln3 ight]$ إذن للمعادلة حل
0.25	. $1,45 < \alpha < 1,46$ ومنه $g(1,45) \simeq 1,99; g(1,46) \simeq 2,01$ و
0.25	$g(x)-2$ ب $g(x)$ ب $g(x)$ ب $g(x)$
ذات الفاصلة 2 و 0.25	لا يقبل مماسا في النقطة و الأشتقاق عند C_f لا يقبل مماسا في النقطة f ($I(II)$
0. 5	2) العدد المشتق من اليمين هو In 2 والعدد المشتق من اليسار هو In 2–
0.25	$\lim_{x \to \infty} f(x) = -\infty $ (3
06 0.5 $f'(x) = \frac{g(x)-2}{}$	$(x \in]2;3]$ من أجل $f'(x) = -\frac{g(x)-2}{x}$ $(x \in]0;2[$ من أجل
0.5 X	X $0+lpha-2+3$: $f'(x)$ اشارة
ات 0.25	جدول النغير $f(3) = \ln 3$ ، $f(2) = 0$ ، $f(\alpha) = (2-\alpha) \ln \alpha$

p)		
	0.25	$\dots \sum_{x = -\infty} \frac{\pi}{2}$ و منه $x = \frac{\pi}{2}$ معادلة مستقيم مقارب $h(x) = -\infty$ (1(III
	0.25	$h(x) = f(\cos x)(2)$
	0.25	مركب الدالة $x\mapsto \cos x$ متبوعة بالدالة $f\left(x ight)$ مركب الدالة مركب الدالة متبوعة بالدالة متبوعة بالدالة متبوعة بالدالة المتبا
		الدالة " \cos " متناقصة تماما على $\frac{\pi}{2}$ و f متزيدة تماما على $[0;1]$ و منه h متناقصة تماما
	0.25	$\left[0;rac{\pi}{2} ight]$ علی $\left[0;rac{\pi}{2} ight]$
	0.25	h'(0)=0 و جدول التغيرات $h'(0)=0$
	0. 5	رسم $(C_{_h})$ و (Δ)
1		

العلامة		Table ation (18th c - 5 - th)
مجموع	مجزأة	(الموضوع الثاني) عناصر الإجابة
	0.75	التمرين الأولى: (04.5 نقط) (γ) التمرين الأولى: ((γ) نقط) التي مركزها (γ) ونصف قطرها (γ) الشاء (γ) الدائرة التي مركزها (γ) ونصف قطرها (γ) الشاء (γ) المناء
	0.75	(γ) ب (γ) نصف مستقیم مبدؤه A ومعامل توجیهه ا (γ) ومعامل زوجیهه از رازی (γ) نصف مستقیم مبدؤه (γ)
	0.5	ج) إحداثيات نقطة تقاطع (γ) و (γ) هي: $(1-\sqrt{2};1+\sqrt{2})$
	0.5	*
04.5	0.5	
	0. 5	AB ومنه CAB ومنه CAB ومنه CAB ومنه CAB ومنه CAB
	0.25	$z_2 = 1 + \sqrt{2} - i(1 + \sqrt{2})$ (ب)
	0. 5	$ (\alpha; \beta) = (1 + \sqrt{2}; -1) $ و منه $\begin{cases} \alpha + (1 + \sqrt{2})\beta = 0 \\ \alpha + \beta = \sqrt{2} \end{cases} $ (**)
	0.5	$\overline{AC}=0$ د) و \overline{AC} شعاع ناظمي له د) هي المستقيم المار من $\overline{OM}.\overline{AC}=0$
	0.25	(y=-x تبریر آخر: معادلة (E) هي (E)
	0.25	(E)
		التمرين الثاني: (4.5 نقطة)
	01	$\overrightarrow{BAC} = 34^{\circ} \overrightarrow{AB.AC} = 18 \text{ (i)} (1)$
	0.5	$BAC \neq 0$ ومنه $BAC \neq 0$ تعین مستویا $BAC \neq 0$ و منه $BAC \neq 0$ تعین مستویا
	0.5	$ \overrightarrow{n}.\overrightarrow{AC} = 0 \overrightarrow{n}.\overrightarrow{AB} = 0 (1) $
04.5	0.5	(ABC): $2x - y + 2z - 3 = 0$ (
04.5	01	$R = 3$ $\Omega(2;-3;1)$ $(x-2)^2 + (y+3)^2 + (z-1)^2 = 9$ (3)
	0.25	(P): $2x - y + 2z + d = 0$ (4
	0.5	$d=-18$ ، $d=0$ ومنه $\left 9+d\right =9$
	0.25	$(P_2): 2x - y + 2z - 18 = 0$ $(P_1): 2x - y + 2z = 0$
	01	n قيم n قيم n قيم n قيم n قيم n قيم n التمرين الثالث: (n نقط) العدد n الباقي n الباقي n الباقي n الباقي n الباقي n العدد n الباقي n الباق
05	0. 5	$5^p = 9 + 16n$ يحقق $n \in \mathbb{N}$ يحقق $n \in \mathbb{N}$ ومنه يوجد $n \in \mathbb{N}$ من أجل $p = 4k + 2$ ومنه يوجد $(k \in \mathbb{N})$ ، $p = 4k + 2$ يحقق $(k \in \mathbb{N})$
	0.5	n=976 ، $p=6$ ب) من أجل $p=6$ ، $p=976$ ، $p=976$

pt.		$[0;+\infty[$ متز ایدهٔ تماما علی f ، $f'(x)=4\ln 5 \times 5^{4x+2}>0$ ، $\lim_{x\to\infty} f(x)=+\infty$ (3
	0.75	«+←x جدول التغير ات
	0.5	استتاج أن $f(x) > 0$
	27046 89	$u_{n+1} = \frac{5^{4n+6}-9}{16} \dot{\omega}_{n+1} = 5^4(u_n + \frac{9}{16}) - \frac{9}{16} \text{ومن} u_n = \frac{5^{(4n+2)}-9}{16} \dot{\omega}_n = \frac{5^{(4n+2)}-9}{16} = 1 = u_0 \text{(§ (4)}$
	0.75	$u_n = rac{5^{(4n+2)}-9}{16}$, $n \in \mathbb{N}$ ومنه لکل
	0.5	
	0.5	$[0;+\infty[$ ومنه (u_n) متزایدة تماما لأن f متزایدة تماما علی $u_n=\frac{1}{16}$ ومنه $u_n=\frac{1}{16}$
		التمرين الرابع: (06 نقطة)
	0.5	$\lim_{x \to -\infty} f(x) = 0 \lim_{x \to +\infty} f(x) = +\infty (1)$
	0.75	$[0;+\infty[$ منز ایدهٔ تماما علی f ، $f'(x)=xe^x$ ومتناقصهٔ تماما علی f ، ومتناقصهٔ f ، ومتناقصهٔ تماما علی المناطق f
	0.25	جدول التغيرات
	0.25	(3 أ) 1;0[−1;0] ≠1 ومنه المعادلة لا تقبل حلولا على [0;∞−[
		مستمرة ومتزايدة تماما على $]\infty+0$ و $]\infty+(-1;+\infty]$ مستمرة ومتزايدة تماما على $]\infty+(0;+\infty]$ عقبل حلا f
	0. 25	اوحيدا في $\mathbb R$
06	0.5	$f(1,27) \approx 0.96; f(1,28) \approx 1.01$ \(\frac{1}{27} < 1 < f(1,28)
	0.75	(C_f) ، $(T): y = ex - e$ اب (C_f) ، $(T): y = ex - e$
	0.75	$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$
	0.25	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
	0.25	$f(m)-1\geq 0$ نقبل حلا واحدا إذا كان $f(m)-1=-1$ أو $f(m)-1\geq 0$ نقبل حلا واحدا إذا كان
	0. 25	$m=1$ أي $m=1$ أو $m\geq lpha$ أي $m=1$ أو $m>0$ أي $m=1$ أي
	0.25	دالة زوجية لأنها معرفة على \mathbb{R} و $h(-x)=h(-x)=h$ دالة زوجية لأنها معرفة على $h(-x)=h(-x)=h$
	0740 #40Ev	ب) إذا كان $x \leq 0$ فإن $h(x) = -f(x)$ ومنه (C_h) نظير (C_f) بالنسبة إلى محور
	0.25	الفواصل على المجال [0;∞-[ثم نكمل الرسم بالتناظر بالنسبة إلى محور التراتيب
	0.25	رسم (C_h) رسم
	0. 5	$b=-2$ ، $a=1$ ، بالمطابقة نجد، $g'(x)=(ax+a+b)e^x$ (6