سلّم التّقيط

وزارة التزبية الوطنية
الليوان الوطني للامتحانات والمسابقات

دورة : جوان 2014
 المادة : تكنولوجيا

امتحان : بكالوريا التتليم الثلتوي
الثشجة : تقتي رياضي / هندسة ميكانيكية

الموضوع الأول : نظام آلي للتقعير

| $20 / 13$ |
| :--- | :--- | :--- |
| $20 / 07$ |
| $20 / 20$ |

ب ـ ملف الأجوبـة

1-5- دراسة الإنشاء
4ـ أتمم الرسم التخطيطي الحركي
أـ تحليل وظيفي

5- التُحديد الوّوظفي للأبعاد : 1-5 أنجز سلسلة الأبعاد الخاصة بالثشرط "Ja " الْىى الرسم الثتلّي ثم أكتب المعادلات الخاصة بهذا الشرط :

$$
\begin{aligned}
& \mathrm{Ja}_{\text {maxx }}=\mathbf{a}_{14 \text { max }}-\left(\mathbf{a}_{17 \text { mini }}+\mathbf{a}_{18 \text { mini }}\right) \\
& \mathrm{Ja}_{\text {mini }}=\mathbf{a}_{14 \text { miniil }}\left(\mathbf{a}_{17 \text { maxi }}+\mathbf{a}_{18 \text { maxi }}\right)
\end{aligned}
$$

2-5 سجل على الجدول الثالّي الثو افقات المناسبة لـ Ø ${ }_{2}$ و Øالموجودة على الرسم التجميعي صفحة 20/3

8-1 در اسة ميكانيكية للمقاومة : الـي
 (7) عند لحظة الثققيز ، يقوم المخرز بـالضـغـ على F=1350N الصفيحة بقوة قـر هار ها نفرض أن مقطع اللساعد (7) عبارة عن مسنطيل (أنظر الشككل الموالي)

ب- أحسب الإجهاد الناظمي σ (R) الذي يؤثر على
الّساعد (7).

$$
\sigma=\frac{F}{S}=\frac{1350}{18 \times 5}=15 \mathrm{~N} / \mathrm{mm}^{2}
$$

2-8 2 أثناء نقل الحركة الدور انية ، تخضع المرززة (29) النأثُّر القص الثبسبط إذا علمنا أن المزدوجة C=55Nm المنقولة تققر بـ
 $d_{2}=22 m m$ و قطر الحمود أحسب القطر الأدنى للمرزة (29) الذي يتحمل هذا

$$
C=F \times \frac{d_{2}}{2} \Rightarrow F=\frac{2 c}{d_{2}}=\frac{2.55 .10^{3}}{22}=5000 \mathrm{~N}
$$

$$
\frac{\mathrm{F}}{2 \mathrm{~S}_{29}} \leq \mathrm{R}_{\mathrm{pg}} \Rightarrow \mathrm{~S}_{29} \geq \frac{\mathrm{F}}{2 \mathrm{Rpg}}=27,77 \mathrm{~mm}^{2}
$$

$$
\mathrm{S}_{29}=\frac{\pi \mathrm{d}_{29}^{2}}{4} \Rightarrow \mathrm{~d}_{29 \operatorname{mini}}=\sqrt{\frac{4 S}{\pi}}=5,94 \mathrm{~mm}
$$

$$
\begin{aligned}
& a=\frac{d_{5}+d_{6}}{2} \Rightarrow d_{5}=2 a-d_{6} \\
& d_{5}=240-40=200 \mathrm{~mm} \\
& z_{6}=\frac{d_{6}}{m}=\frac{40}{2}=20 \quad \text { dents } \\
& z_{5}=\frac{d_{5}}{m}=\frac{200}{2}=100 \text { dents }
\end{aligned}
$$

6- در اسة المتنسننات الأسطو انية ذات أسنان قائمة $:\{(6) \cdot(5)\}$
 والحسابات :

$$
\mathrm{da}_{5}=\mathrm{d}_{5}+2 \times \mathrm{m}=200+4=204 \mathrm{~mm}
$$

$$
\mathrm{da}_{6}=\mathrm{d}_{6}+2 \times \mathrm{m}=40+4=44 \mathrm{~mm}
$$

$$
\mathrm{df}_{5}=\mathrm{d}_{5}-2.5 \times \mathrm{m}=200-5=195 \mathrm{~mm}
$$

$$
\mathrm{df}_{6}=\mathrm{d}_{6}-2.5 \times \mathrm{m}=40-5=35 \mathrm{~mm}
$$

a	$d f$	$d a$	z	d	m	
120	35	44	20	40		(6)
	195	204	100	200		(5)

2-6

$$
r_{6-5}=\frac{d_{6}}{d_{5}}=\frac{40}{200}=\frac{1}{5}
$$

3-6 اُحسب سر عة دوران الحمود (2):
$\mathrm{N}_{6}=\mathrm{N}_{\mathrm{m}}=750 \mathrm{tr} / \mathrm{mn}$
$\mathrm{N}_{2}=\mathrm{N}_{5}=\mathrm{N}_{6} \times \mathrm{r}_{6-5}=750 \times \frac{1}{5}=150 \mathrm{tr} / \mathrm{mn}$
7- أحسب مشوار المخرز C
$C=2 \times r=2 \times 52=104 \mathrm{~mm}$

1-5- دراسة الإنشاء:

* دراسة تصميمية جزئية:

لتحسين مردود جهاز الثققير (صفحة 20/3) و جطله أحسن وظيفيا ، نطلب: ـ تغيير الوسادات (11) المستعحلة في الوصلة المتّمحورة بين المعود (2) و الميكل (1) بمدحرجات ذات صف واحد من الكريات بتلامس نصف قطري. ـ تثغيير الوصلة الإندماجية القابلة للفكا بيين العجلة(5) و العمود(2) بحل آخر مستمينا بملف الموارد. - ضمان الكتنامة بواسطة الغطاء(32) و فاصل ذو شفقين من الجهة اليمنى.

* دراسة تـريفية جزئية: مستعينا بالر سم الثجتميعي(صفحة 20/3)، أكمل الرسم التنر يفي للز الثق(13) بمقياس 2:1 حصب: -الكسقط الأمامي بقطاع - الكسقط العلوي - وضح الّسماحات المهنسسية(بنون فيم) و رموز الخشونة (بدون قيم) .

صفحة 4 من 12

2-5- دراسة التحضير

أـ تكنولوجيا لوسائل و طرق الصنع: نريد در اسة وسائل وطرق صنع الكحور (8) اللنجز من مادة 30NiCr6 كما ييبنه الرسم التنريفي الموالي مع العلم أن السطوح المرقمة هي السطوح المشغلة و أن سلسلة التصنيع صغيرة.يققر السمك الإضافي بـ 1mm.

1 - إشرح تعيين مادة صنع المحور 30NiCr6 (8) صلب ضعيف المزج -30: 0.3\%من الكربون - Ni : نيكل - Cr : كروم - 6 - 6 \% 1.5 من نيكل.

2 ـ أعط أبعاد الخام للمحور (8)

$$
L=105 \mathrm{~mm} \quad \varnothing=40 \mathrm{~mm}
$$

3 ـ استعمل العلامة (x) في الخانة المناسبة لاختيار وحدات النتثغيل المناسبة لصنع اللحور (8)

(شكن)

4 ـ أكهل جدول سبر الصنع الموالي للمحور(8)

منصب العمل	العمليات	المرحل
منصب المر اقبة	مر اقبة الخام	100
منصب الخر اطبة	12-11-10-5-4-3-2-1	200
منصب الخر اطة	14-13-7-6	300
منصب التفريز	18-17-16-15-9-8	400
منصب المر اقبة	مر اقبة نهائية	500

6 - ما هي أجهزة القياس المناسبة لمر اقبة أبعاد الصنع

$$
\begin{aligned}
& \text { الخاصة بانجاز السطوح (1) و (2): } \\
& \text { - البعد(1) : قام القياس } \\
& \text { CMD - اللعد(2) : ميكرومتر : }
\end{aligned}
$$

5 - ضع الدحور (8) في وضعية سكونية (إيزوستاتية) لإنجاز اللسطوح (1) و (2) مع تمثيل أدوات التطع اللناسبة في وضية التنتثيل مع تسجيل أبعاد الصنع بدون قيم.(شكل1)

 الالي بيزل للقّام بعملية النقّبير تلامس المخرز بالملئقط (C) في نهاية صـوده يسبب نوقف المحركّ و خروج ساق الدافعة (V2) لإخلاء الصفيحة الكقعرةنحو صندوق النخزين.

2 - أربط الدافعة V1 بموز ع 5/2 في الحالثين.
الحالة الأولىى

الحالة الثانية

1 - أُمم المخطط (م ت م ن) مستوى 2 الخاص بالنظام .

سلم التنقيط

وزارة التربية الوطنية
الاليوان الوطني للامتحانات و المسابقات

دورة : جوان 2014
المادة: :تكنولوجيا

امتحان : بكالوريا التحليم الثّلتوي الشعبة : تقتي رياضي / هندسة ميكانيكية الموضوع الثاني : نظام آلي للتلولب اللاخلي

ب ـ ملف الأجوبة

1-5- دراسة الإنشاء

4ـ أتمم الرسم النخطيطي الحركي
أـ تحليل وظيفي

1- أكمل مخطط الوظيفة الإجمالية للنظام الآلي
(
طلقة كهربائيـة و هو ائبة

2ـ أكنل مخطط الوظائف النقتية لجهاز التلولب الداظلي
1-5 أنجز سلسلة الأبعاد الخاصة بالثنرط " لالملى
الرسم النالي ثم أكتب المعادلات الخاصة بهذا النّرط :

$J a_{\text {maxi }}=a_{11 \text { maxi }}\left(a_{10 \text { mini }}+a_{10^{\prime}}{ }^{\prime}{ }^{\prime}{ }^{\prime}\right)$ $J a_{\text {mini }}=a_{11 \text { mini }}-\left(a_{10 \text { max }}+a_{10}{ }^{\prime}{ }_{\text {maxi }}\right)$

2-5 علما أن التوافق الموجود بين (11) و (8)هو: :78H7g6

$$
78 \mathrm{~g} 6=78^{-290} 78 \mathrm{H} 7=78^{+30}
$$

-أحسب الخلوص الأقصى و الخلوص الأدنى ثُم استْتج نوع النو افق.
$J_{\text {max }}=\mathrm{Al}_{\text {max }}-\mathrm{Ar}_{\text {min }}=78.030-77.971=0.059 \mathrm{~mm}$
$J_{\text {min }}=\mathrm{Al}_{\text {min }}-\mathrm{Ar}_{\text {max }}=78-77.990=0.010 \mathrm{~mm}$
نستخلص أن التوافق بظلوص

7ـ دـ اسة ميكانيكية للمقاومة : نفرض أن العمود (2) عبارة عن عارضة أفقية تحت تأُّير الانحناء المسنوي البسيط وخاضع للجهود التالية: $\left\|\vec{F}_{\mathrm{A}}\right\|=840 \mathrm{~N}\left\|\vec{F}_{\mathrm{B}}\right\|=840 \mathrm{~N}\left\|\vec{F}_{\mathrm{C}}\right\|=1680 \mathrm{~N}$ س40N $\rightarrow 1 \mathrm{~cm}$ سلم الققوى ـــ $20000 \mathrm{Nmm} \rightarrow 10 \mathrm{Tm}$ سلم الحزوم
_ حساب الجهود القاطعة:

$$
T=+F_{A}=+840 N \quad \text { AC الدنطةة }
$$

$T=+F_{A}-F_{C}=+840-1690=-840 \mathrm{~N} \quad C B$ الدنطة
حساب عزوم الإنحناء الطريقة 1
$0 \leq x \leq 50$
$\mathbf{M}=-F_{A} \cdot x\left\{\begin{array}{l}x=0 \Rightarrow M \mathbf{M}=0 \\ x=50 \Rightarrow M \mathbf{M}=-42000 \mathrm{Nmm}\end{array}\right.$ $50 \leq x \leq 100$

CB الدنطقة
$M f=-F_{A} \cdot x+F_{c}(x-50)$
$\left\{\begin{array}{l}x=50 \Rightarrow M f=-42000 N m m \\ x=100 \Rightarrow M f=0\end{array}\right.$
الطريقة 2
$0 \leq x_{1} \leq 50$
AC المنطقة
$M f_{1}=-F_{A} \cdot X_{1}\left[\begin{array}{l}X_{1}=0 \Rightarrow M f_{1}=0 \\ x_{1}=50 \Rightarrow M f_{1}=-42000 \mathrm{Nmm}\end{array}\right.$ $0 \leq x_{2} \leq 50$
$M_{2}=-F_{4}\left(50+x_{2}\right)+F_{C} x_{2}\left(\begin{array}{l}\left(x_{2}=0 \Rightarrow M_{2}=-42000 \mathrm{Nm}\right. \\ x_{2}=50 \Rightarrow M_{2}=0\end{array}\right.$

6- در اسة المتنسنتات الأسطو انية ذات أسنان قايُمة
$:\{(4) \cdot(3)\}$
1-6- أنّم جدول المميزات التالي مح الحسابات :
$a=\frac{d_{4}-d_{3}}{2} \Rightarrow d_{4}=2 a+d_{3}=354 \mathrm{~mm}$
$z_{3}=\frac{d_{3}}{m}=\frac{114}{3}=38$
$z_{4}=\frac{d_{4}}{m}=\frac{354}{3}=118$
$\mathrm{da}_{3}=\mathrm{d}_{3}+2 \times \mathrm{m}=114+6=120 \mathrm{~mm}$
$\mathrm{da}_{4}=\mathrm{d}_{4}-2 \times \mathrm{m}=354-6=348 \mathrm{~mm}$
$\mathrm{df}_{3}=\mathrm{d}_{3}-2.5 \times \mathrm{m}=114-7.5=106.5 \mathrm{~mm}$
$\mathrm{df}_{4}=\mathrm{d}_{4}+2.5 \times \mathrm{m}=354+7.5=361.5 \mathrm{~mm}$

a	df	da	z	d	m	
120	106.5	120	38	114		(3)
	361.5	348	118	354		(4)

2-6 اُحسب سر عة اللمود (2):
$r=\frac{N_{2}}{N_{5}}=0.32 \Rightarrow$
$\mathrm{N}_{2}=\mathrm{N}_{5} \times \mathrm{r}=750 \times 0.32=240 \mathrm{tr} / \mathrm{mn}$
3-6 أحسب المزدوجة C على مستوى الثنرس (3):
$C=\frac{\mathrm{P}}{\omega}=\frac{30 \times \mathrm{P}}{\pi \times \mathrm{N}}$
$C=\frac{30 \times 1.5 \times 10^{3}}{3.14 \times 750}=19.10 \mathrm{Nm}$ 6-6 اُحسب الجهـ الممانسي T المؤثر على مسنوى

النترس(3):
$\mathrm{C}=\mathrm{T} \times \frac{\mathrm{d}_{3}}{2} \Rightarrow \mathrm{~T}=\frac{2 \times \mathrm{C}}{\mathrm{d}_{3}}$
$\mathrm{T}=\frac{2 \times 19.10 \times 10^{3}}{114}=335.08 \mathrm{~N}$: براسةٌ تصميمية جزئية:نتحسين المجموعة الجزئية على مستوى عمود الخروج (2) لجهاز التلولب الاخلي و نظرا لوجود جهود محورية ناتجة عن عملية القطع نطلب: ـ تـويض المدحرجات(18)بمدحرجات ذات دحاريج مخروطية لضمان الوصلة المتمحورة بين(2) و \}(1)/(6)\{

- وضع النو افقات المناسبة لتركيب هذه المدحرجات.
- أنجز الوصلة الإنتماجية بين العجلة (4) و العمود (2). - ضمان كتامة الجهاز .

* دراسة تعريفية جزئية:

مستينيا بالرسم التجميعي(صفحة 20/13)، أكهل الرسم التعريفي للغطاء(16) بمقياس 2:1 حسب: -المسقط الأمامي بقطاع - نصف مسقط أيسر -وضع: *الأبعاد الوظيفية الخاصة بالأقطار . * السماحات الْنّسية (بدون قيم) و رموز الخشونة (بدون قيم).

2-5- دراسة التحضير:

أـــتكنولوجيا لوسائل و طرق الصنع:
نريد در اسة وسائل و طرق صنع الثتر سل(3) اللنجز من مادة 25CrMo4 كما يبينه الرسم التعر يفي الموالي مع العلم أن السطوح المر قمة هي السطوح المشُلة و أن سلسلة التصنيع صنيرة.السمك الإضافي للتشُغيل يقـرب :

$\mathrm{m}=3$ $\mathrm{z}=38$
Ra=3.2
سماح عام=0.1

1-25CrMo4: إثر حتيين مادة صنع الترس (3) صلب ضتيف المزج -25: 0.25\%من الكريون :مروم- Mo : مليبدان- 4 : 1\% من الكروم: Cr

4- ضع الترس(3)(3)في وضعية سكونية(ايزوستاتية) لإنجاز النطوح(1)و(3)مع تمثيل أدوات القطع المناسبة في وضعية التشغيل و تسجيل أبعاد الصنع .

5- أحسب سر عة الدور ان(N)للتنرس و سرعة الثتذية) (Vf) عند إنجاز

$\mathrm{N}=\frac{1000 \times \mathrm{Vc}}{\pi \times \mathrm{d}}=\frac{1000 \times 80}{3.14 \times 120}=212.31 \mathrm{tr} / \mathrm{mn}$
$\mathrm{Vf}=\mathrm{N} \times \mathrm{f}=212.31 \times 0.2=42.46 \mathrm{~mm} / \mathrm{mn}$ 6ـ حدد أجهزة القياس الخاصة بمر اقبة أبعاد الصنع لإنجاز النطوح(1)و(3):
قدم القياس - ميكرومتر داخلي -

2- أرسم الثنكل الأولي لخام الثرس(3) مع تحديد أبعاده:

3- أتمم جدول سير الصنع التاللي:

المنصب	العمليات	المرحة
مركز المر اقبة	مر اقبة الخام	100
خراطة	2	200
خر اطة	3-1	300
تفريز	7-6-5	400
تفريز	4	500
مركز المر اقبة	مر اقبة نهائية	600

 للقطعة.

2ـ مـ الـ هو نو ع الدافعة
1 - أثنم المخطط (م ت م ن) مستوى 2 الخاص
دافعة مزدوجة التأثنير
3- أربط الدافعة V2 بالموز ع المناسب.

