الجمهورية الجزائوية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2014

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و30 د

اختبار في مادة: التكنولوجيا - هندسة كهربائية

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول: نظام آلي لتشكيل قطع معدنية

- يحتوي الموضوع على 9 صفحات من (19/01 إلى 19/09)
 - العرض من الصفحة (19/01 إلى الصفحة 19/07)
 - العمل المطلوب الصفحة (19/08)
 - وثيقة الإجابة الصفحة (19/09)

I. دفتر الشروط المبسط:

1- الهدف من التألية: يهدف هذا النظام إلى تشكيل قطع من قضبان معدنية على شكل حرف L تستعمل في الزخرفة.

2- وصف التشغيل: يحتوي النظام على (6) أشغو لات:

- الأشغولة (1): الإتيان بالصندوق.
- الأشغولة (2): تقديم وتثبيت القضيب المعدني.
 - الأشغولة (3): تشكيل القطعة.
 - الأشغولة (4): قطع القطعة المشكلة.
 - الأشغولة (5): عد وفك التثبيت.
- الأشغولة (6): إخلاء صندوق القطع المشكلة.

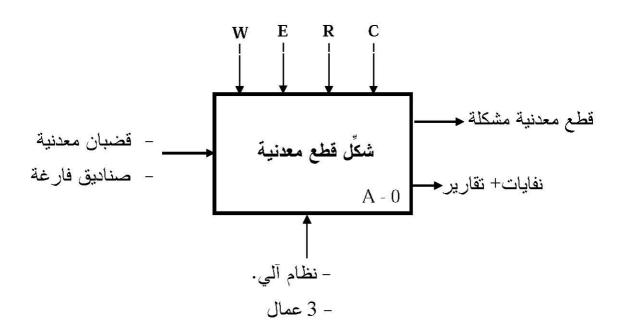
التشغيل: يضع العامل على البساط2 رزمة من 12 قضيب معدني الذي يكشف عنها الملتقط f ثم يضغط على Dcy.

يدور البساط1 للإتيان بصندوق فارغ الذي يكشف عنه الملتقط k ثم يدور البساط2 بو اسطة المحرك M_2 حتى الضغط على g فيثبت القضيب بو اسطة الرافعة M_2

عملية التشكيل: يتم تشكيل جزء من القضيب بخروج ذراع الرافعة C حتى الضغط على c_1 ثم يعود ساق الرافعة حتى الضغط على c_0 .

عملية القطع: ينزل ساق الرافعة B حتى الضغط على b_1 فتبدأ عملية القطع بواسطة الجملة (الرافعة b_1 والمحرك b_2 حتى الضغط على b_3 عندها تعود الجملة حتى الضغط على b_3

عملية عد وفك التثبيت: عند مرور القطعة المشكلة أمام خلية الكشف تبدأ عملية العد ويفك التثبيت. عملية إخلاء القطع المشكلة: عند مرور 12 قطعة مشكلة يتم إخلاء الصندوق المملوء بواسطة الجملة (الرافعة D والمحرك M_4).

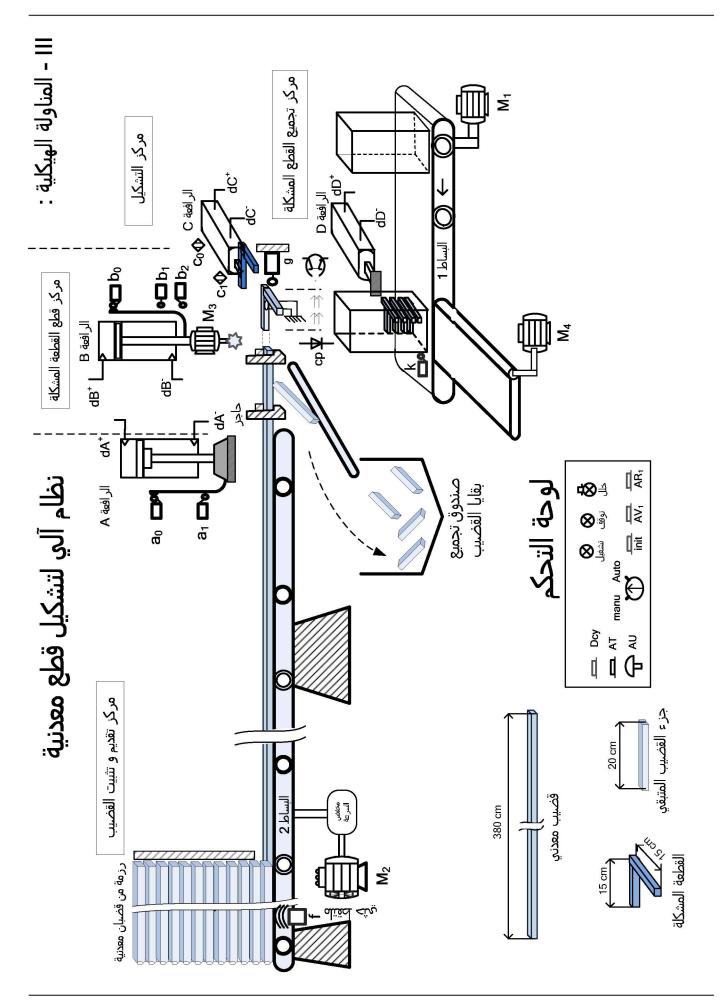

ملاحظة: بعد انتهاء رزمة القضبان المعدنية يحرر الملتقط f فيرن جرس التنبيه ليقوم العامل بتزويد البساط2 برزمة جديدة من القضبان المعدنية لانطلاق دورة أخرى.

- 3- الاستغلال: تشغيل هذا النظام يتطلب وجود 3 عمال:
- عامل مختص: يقوم بعمليات التهيئة والمراقبة والصيانة الدورية.
- عاملان دون اختصاص: تزويد البساط1 بصناديق فارغة وسحب المملوءة.
- وضع رزمة قضبان معدنية جديدة على البساط2 وسحب الجزء المتبقى من القضيب في نهاية التشغيل.

4- الأمن: حسب القوانين المعمول بها دوليا.

II. التحليل الوظيفى:

الوظيفة الشاملة: مخطط النشاط (A-0)



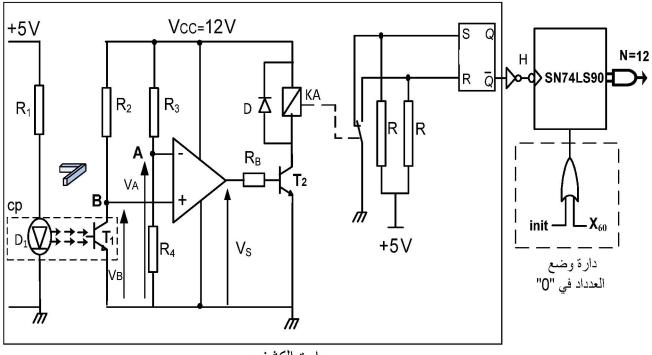
(الطاقة): E_E طاقة كهر بائية، E_E طاقة هو ائية.

R (الضبط): N عدد القطع المشكلة.

E (الاستغلال): Auto آلي- manu يدوي، Au توقف استعجالي.

C (الالتزامات): تغيير برنامج الآلي المبرمج الصناعي API.

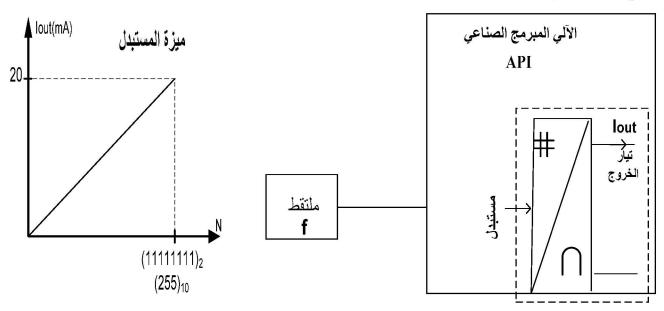
IV. المناولة الزمنية:


متمن القيادة والتهيئة GCI متمن الإنتاج العادي GPN الاتيان بالصندوق 100 حضورصندوق Auto manu تقديم وتثبيت القضيب 102 تهيئة آلية للنظام تشغيل يدوي قضيب مثبت شروط أولية تشكيل القطعة 103 I/GPN(1) manu قطعة مشكلة قطع القطعة المشكلة إذن بالتشغيل الآلي نهاية القطع Auto عد و فك التثبيت متمن الأمن GS نهاية العد (N=12) و الفك 🕂 العد (N<12) + اخلاء صندوق القطع المشكلة نهاية إخلاء الصندوق ووجود قضيد F/GCI(100) F/GPN (10,20,30,40,50,60) AU . RT1.RT2.RT3 .RT4. REA متمن أشغولة تقديم وتثبيت القضيب 201 AU+RT1+RT2+RT3 +RT4 + X104.X2 متمن أشغولة الإتيان بالصندوق KM₂ dA^{+} X104.X1.f KM₁

- X2

	2	المنفذات	المنفذات المتصدرة	الملتقطات
جدول الاختيارات التكنو	أشغولة الإتيان بالصندوق	M: محرك لا نزامني 3~ إقلاع مباشر اتجاه و لحد للموران مزود بمكبح كهربائي	KM1: ملامس كهر ومغناطبسي ~24V	لا: ملتقط بكشف عنحضور الصندوق فارغكن ملتقط حثي بكشفعن وجود قضيب.
لوجية للمنفذات والمنفذات اا	أشغولة تقديم وتثبيت القضيب	M:محرك لا تزامني 3~ إقلاع مباشر اتجاه واحد للدوران مجهز بمخفض السرعة A: راقعة مزدوجة المفعول	A_{1} المنتقر ال تحكم كهربائي A_{1} الاستقر ال تحكم في خروج A_{2} الراقعة A_{2} ملامس A_{2} مغناطيسي A_{2}	a: ملتقط نهایهٔ شوط یکشف عن خروج ساق الر افعهٔ A g: ملتقط یکشف عن حضور القضیب.
لمتصدرة والملتقطات: شبا	أشغولة تشكيل القطعة	C: رافعة مزدوجة المفعول 3bars مزودة بقالب التشكيل	dC: موزع 2/5 ثنائي الإستقرار نحكم كهربائي 24V~ خروج ودخول الراقعة كروج ودخول الراقعة	رى،0: ملتقطات نهاية شوط تكشف عن خروج ودخول ساق للرافعة C
جدول الاختيارات التكنولوجية للمنفذات والمنفذات المتصدرة والملتقطات: شبكة التخذية ثلاثية الطور 50Hz , 50Hz	أشغولة قطع القطعة المشكلة	M: محرك لا تزامني 3 ~ إقلاع مباشر إنجاه و لحد للدور ان. B: رافعة مزدوجة المفعول	dB: موزع 2/5 ثنائي الإستقرار تحكم كهربائي 24V~ - 4B و dB تحكم في خروج ورخول الراقعة 24V~ كهرومغناطيسي ~24V	od: ملتقط نهایهٔ شوط یکشف عن دخول الر افعهٔ B راد ملتقط نهایهٔ شوط یکشف عن بدایهٔ القطع وظ مکشف عن نهایهٔ شوط یکشف عن نهایهٔ القطع
(220/380)V, 50	أشغولة عد وفك التثبيت	A: ر افعة مز دوجة المفعول Sbars	4h: موزع 5/2 ثنائي الاستقرار تحكم كهربائي ~24V الرافعة A الرافعة A لعد الالآلاني	e: ملتقط نهاية شوط يكشف عن دخول ساق الر افعة A الر افعة خلية كهروضوئية تكشف عن مرور القطعة
	أشغولة إخلاء صندوق القطع المشكلة	M4: محرك لا نز امني 3~ إقلاع مباشر اتجاه و احد للدور ان لد و افعة مزدوجة المفعول 3bars	db: موزع 2/2 ثنائي الإستقرار تحكم كهربائي 24V~ خروج ولخول الرافعة كهرومغناطيسي ~24V~ كهرومغناطيسي ~24V	$_1$ b، $_0$ b: ملتقطات نهایهٔ شوط تکشف عن خروج وحخول ساق الرافعهٔ $_0$

VI - إنجازات تكنولوجية:


1. دارة الكترونية لكشف وعد 12 قطعة مشكلة: المضخم العملي مثالي

دارة الكشف

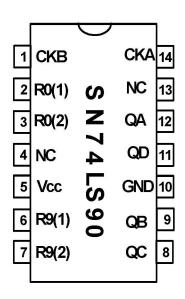
المبرمج الآلي الصناعي: نريد التحكم في المنفذ المتصدر الأشغولة الإتيان بالصندوق باستعمال المبرمج الآلي الصناعي، طابق خروج المبرمج الآلي الصناعي يحتوي على مستبدل.

التيار في كامل السلم يقدر بـ A . 20 mA .

VII. الوثائق التقنية للصانع:

خصائص وشائع المرحل KA

توتر التغذية	مقاومة الوشيعة	المرجع
12 V	530 Ω	720
6 V	58 Ω	712


لوحة مواصفات المحرك اللاتزامني ثلاثي الطور M_1 وجدول اختيار أجهزة الحماية والتحكم.

Zone de réglage du relais	Fusible الفاصمة	contacteur		Masse
مجال ضبط المرحل الحراري	aM	LC1,LP1 الملامس الكهرومغناطيسى	مرجع المرحل الحراري	الكتلة
A	A	الكهرومغناطيسي		Kg
1,6 – 2,5	4	D09-D32	LR2D13 07	0,165
2,5 - 4	6	D09-D32	LR2D13 08	0,165
4 - 6	8	D09-D32	LR2D1310	0,165
5,5 - 8	12	D09-D32	LR2D13 12	0,165

٧	HZ	tr/mn	KW	cosφ	A
△ 220		935	1,1	0,78	4,5
Y 380	50				2,6

الدارة المندمجة SN74LS90

	INPUTS					OUTPOUTS		
R0(1)	R0(2)	R9(1)	R9(2)	Q_{D}	Qc	Q_{B}	QA	
Н	Н	L	X	L	L	L	L	
Н	Н	X	L	L	L	L	L	
X	X	Н	Н	Н	L	L	Н	
X	L	X	L	COUNT				
L	X	L	X	COUNT				
L	X	X	L	COUNT				
X	L	L	X	COUNT				

العمل المطلوب

I. التحليل الوظيفي التنازلي A0:

س1: أكمل التحليل الوظيفي التنازلي على وثيقة الإجابة صفحة 19/09.

II. التحليل الزمنى:

س2: أنجز متمن أشغولة قطع القطعة المشكلة من وجهة نظر جزء التحكم.

س3: اكتب على شكل جدول معادلات التنشيط والتخميل لمتمن الأشغولة 1 (الاتيان بالصندوق) صفحة 19/04.

س 4: ما هو دور المرحلة X201 في متمن الأمن والمرحلة X104 في متمن القيادة والتهيئة صفحة X104.

III. تحليل وانجازات تكنولوجية:

س5: أكمل ربط دارة المعقب الهوائي لأشغولة تقديم وتثبيت القضيب على وثيقة الإجابة صفحة 19/09. الدارة الإلكترونية لكشف وعد 12 قطعة مشكلة صفحة 19/06:

س6: أملء جدول تشغيل دارة الكشف على وثيقة الإجابة صفحة 19/09

 $R_3=R_4$ إذا كانت VA أيد احسب قيمة VA

لعد 12 قطعة مشكلة استعملنا عداد بدارتين مندمجتين SN 74LS90

مستعينا بالوثائق التقنية للصانع صفحة 19/07:

س8: أكمل ربط دارة العداد على وثيقة الإجابة 19/09.

 V_{CE} sat=0V غلما أن KA ذات المرجع 720 علما أن V_{CE} sat=0V. المبرمج الآلي الصناعي صفحة 19/06:

س10: ما هو نوع المستبدل المستعمل في دارة الخروج.

س11: أ- احسب خطوة المستبدل.

 $N(1000000)_2$ عند القيمة الرقمية I_{out} عند الخروج ب

س12: اكتب متمن أشغولة الإتيان بالصندوق بلغة المتمن (langage grafcet) حيث نمثل: المداخل: (Inputs (O) والمخارج: (Outputs (O)

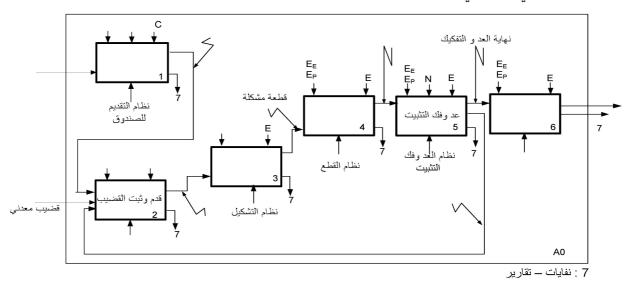
وظيفة الاستطاعة: دراسة المحرك 11/1 مستعينا بالوثائق التقنية للصانع صفحة 19/07:

س13: أ- كيف تقرن لفات ساكن المحرك على شبكة التغذية؟ علل إجابتك.

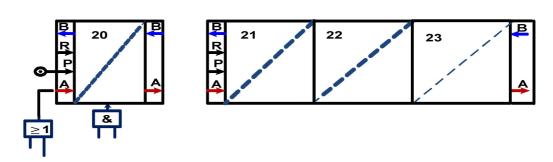
ب- عين المرحل الحراري المناسب لحماية المحرك.

وظيفة التغذية وتحويل الطاقة: لتغذية المنفذات المتصدرة استعملنا محول أحادي الطور لوحة مواصفاته تحمل الخصائص التالية: 220/24V, 300VA, 50HZ

 $U_1 = 220 V$ ، $U_{20} = 26,4 V$ تجربة في الفراغ

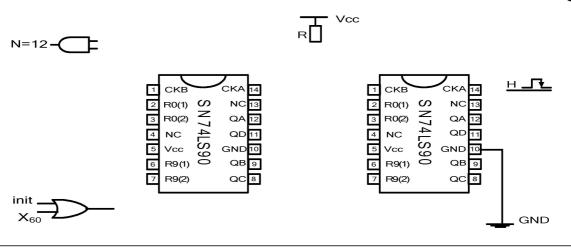

 $U_{1CC}{=}20V$ ، $P_{1CC}{=}23{,}4W$ ، $I_{2CC}{=}I_{2N}$ إسمى إلى أيار ثانوي إسمى

س14: احسب نسبة التحويل في الفراغ.


 R_S, Z_S, X_S س 15: احسب المقادير المرجحة للثانوي

وثيقة الإجابة:

ج1: التحليل الوظيفي التنازلي A0:


ج5: المعقب الهوائي لأشغولة تقديم وتثبيت القضيب:

ج6: جدول تشغيل دارة الكشف على مرور القطعة المشكلة:

المخرج Q	المدخل R	المدخل S	T_2 المقحل	$ m V_S$ التوتر	T_1 المقحل	الحالة
						غياب القطعة
						مرور القطعة

ج8: دارة العداد:

الموضوع الثانى: نظام تشكيل وتوضيب علب الياغورت

يحتوي الموضوع على 10 صفحات من 19/10 إلى 19/19.

- وصف تشغيل النظام والموارد التقنية: من الصفحة 19/10 إلى الصفحة 19/15
 - المناولة الهيكلية صفحة 19/16
 - الأسئلة صفحة 19/17
 - أوراق الإجابة صفحة 19/18 و 19/19

I/ دفتر المعطيات:

1/ هدف النظام الآلي: إن متطلبات النظافة والمردودية في الصناعات الغذائية تستلزم معالجة آلية تخضع لمقاييس
 النظافة مع أقل تدخل لليد البشرية.

2/ الوصف: النظام المدروس يقوم بصنع علب ياغورت (مجموعات من 6 علب)، ملئها، غلقها وتقطيعها ثم إخلائها.
 لذا يتكون النظام مما يلي:

- وحدة التقديم: تمكن من تقديم الشريط البلاستيكي الملفوف حول الأسطوانة B1 بواسطة المحرك Mt.
- وحدة التشكيل (القولبة): تمكن من تشكيل علب فارغة (مجموعة من 6 علب) انطلاقا من الشريط البلاستيكي بواسطة القالب العلوي والقالب السفلي. صعود القالب السفلي بواسطة الرافعة C_2 ، هبوط القالب العلوي بواسطة الرافعة C_1 بعد مدة زمنية تقدر بـ C_1 كافية لتسخين الشريط و ينتهي التشكيل برجوع الرافعتين معا.
- وحدة الملء: تمكن من ملء علب الياغورت بواسطة 6 أنابيب صغيرة متحكم فيها بواسطة الكهروصمام Ev الذي يفتح لمدة 5s. هذه الوحدة موجودة على مسافة كافية من وحدة التشكيل لضمان تبريد العلب قبل ملئها.
 - وحدة غلق العلب: يتم غلق العلب بشريط لاصق و مطبوع ملفوف على الأسطوانة B2.
 - وحدة القطع: تمكن من قطع مجموعة العلب بواسطة السكين.
 - وحدة الإخلاء: تمكن من إخلاء المجموعات الجاهزة نحو مركز التخزين.

3/ كيفية التشغيل: تنطلق الدورة بعد تحقيق الشروط الأولية التالية:

- وجود الشريط البلاستيكي على الأسطوانة B1، يكشف عنها الملتقط S_1
 - وجود الباغورت في الخزان، يكشف عنه الملتقط S_2 .
- وجود الشريط اللاصق و المطبوع على الأسطوانة B2، يكشف عنه الملتقط S_3 .

يتجزأ تشغيل النظام إلى 6 أشغو لات: تشكيل، ملء، غلق، قطع، إخلاء وتقديم.

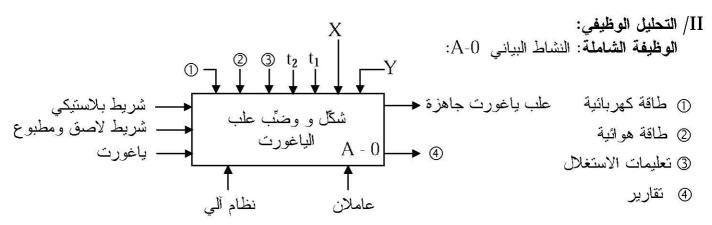
أشغولة الغلق وأشغولة الإخلاء غير مدروسين.

- ◄ الدورة الأولى: تشكيل (قولبة) العلب ثم تقديم الشريط.
- معود القالب السفلي بالرافعة \mathbf{C}_2 لتسخين الشريط البلاستيكي.
- تشكيل العلب بضغط القالب العلوي على الشريط البلاستيكي بهبوط الرافعة C_1 .
- انتقال الشريط البلاستيكي بمسافة مضبوطة بواسطة المحرك Mt. الملتقط S4 غير موضح في المناولة الهيكلية.
 - ◄ الدورة الثانية: ملء العلب، تشكيل ثم تقديم.
 - أثناء تشكيل المجموعة الخامسة من العلب، تعبئ المجموعة الأولى بفتح الكهروصمام Ev لمدة 5s.
 - ◄ الدورة الثالثة: قطع العلب، ملء، تشكيل وتقديم.
 - أثناء تشكيل المجموعة السابعة، تملء المجموعة الثالثة وتقطع المجموعة الأولى بهبوط السكين المثبت على الرافعة C_3 ويستمر التشغيل العادى إلى غاية نفاذ الشريط البلاستيكى.

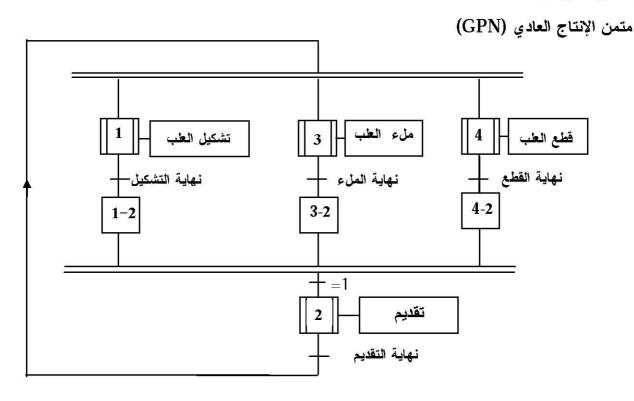
ملاحظات:

- تزويد النظام بأسطو انات الشريط البلاستيكي والشريط اللاصق المطبوع تتم يدويا.
- عد المجموعات المشكلة محققة بواسطة عداد لا تزامني تشكل مخارجه العدد N.

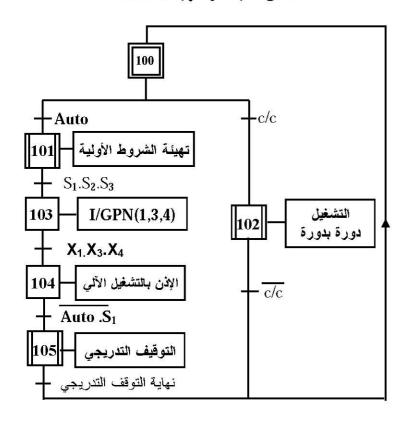
لتحقيق التشغيل الجيد للنظام تم إضافة للعداد دارة منطقية تولد إشارتين:

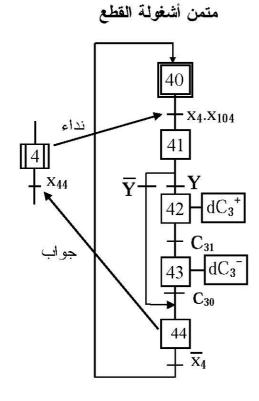

الملء عملية الملء $X=N\geq 4$ إذا كان X=1

يتحكم في عملية القطع Y=1 إذا كان $N\geq 6$

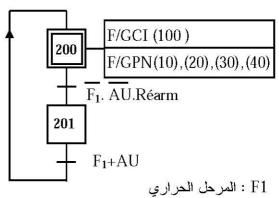

4/ الاستغلال: يتطلب هذا النظام حضور عاملين:

- تقنى خاص لعملية القيادة، المراقبة والصيانة.
- عامل لتزويد النظام بأسطوانات الشريط البلاستيكي والشريط اللاصق المطبوع.

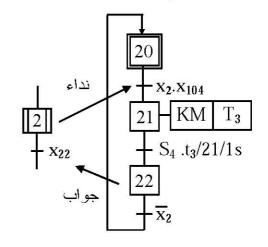

5/ الأمن: حسب القوانين المعمول بها في المجال الصناعي.



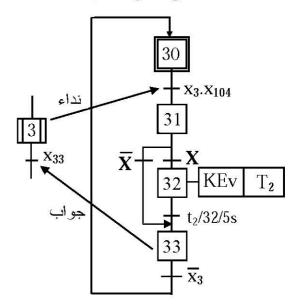
III/ المناولة الزمنية:



متمن القيادة والتهيئة: GCI

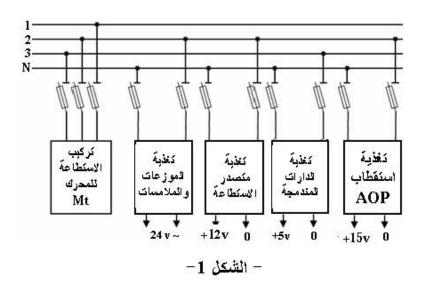


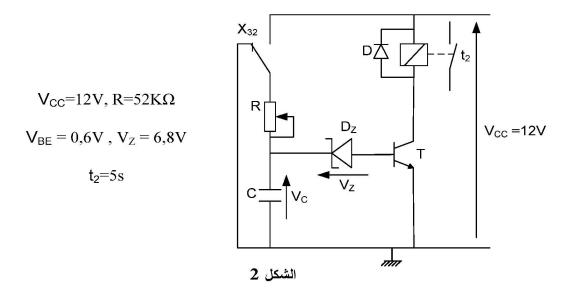
متمن الأمن: GS



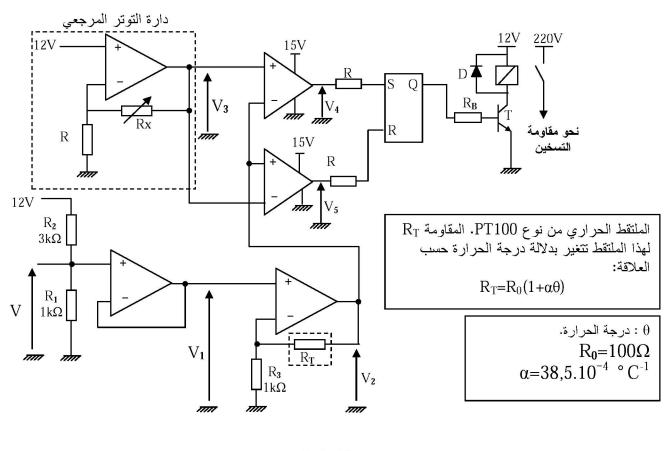
F1 : المرحل الحراري AU : زر الإيقاف الاستعجالي Réarm : زر إعادة التسليح

متمن أشغولة التقديم

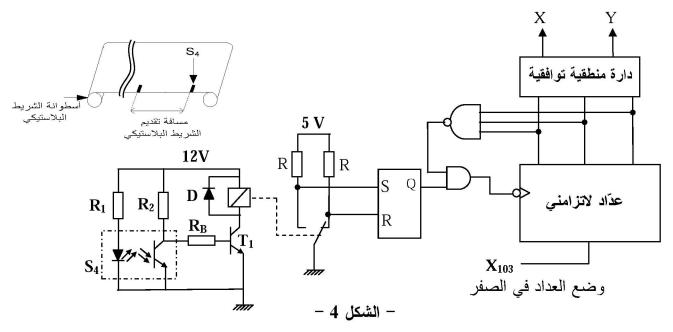

متمن أشغولة الملء


IV/ المناولة المادية: 1- الاختيار التكنولوجي للمنفذات، المنفذات المتصدرة والملتقطات:

الملتقطات	المنفذات المتصدرة	المنفذات	
C_{10} ، C_{11} ، C_{10} ، C_{11} . الشوط . C_{20} ، C_{21} ، C_{20} ، C_{21} . الشوط . C_{10} ، C_{10} . C_{10} ، C_{10} . $C_{$	 موزع 4/2 ثنائي الاستقرار † dC₁ ،dC₁ تحكم كهرو هو ائي~24V . موزع 4/2 ثنائي الاستقرار † dC₂ ،dC₂ تحكم كهرو هو ائي~24V . † :T₁ مؤجلة 	- رافعة C ₁ ذات فعل مزدوج. - رافعة C ₂ ذات فعل مزدوج. - مقاومة التسخين	التشكيل
 - S₁: ماتقط سيعي للكشف عن أسطوانة الشريط - إS₁: ماتقط كهرو ضوئي لتحديد انتقال الشريط البلاستيكي. - t₃: تماس مؤجل S₁: 	KM: ملامس كهرو مغناطيسي ~24V T3: مؤجلة	Mt: محرك لا تزامني ثلاثي الطور إقلاع مباشر، اتجاه واحد للدوران مزود بمكبح بغياب التيار وبمخفض للسرعة.	التقديم
 S₂: ماتقط المستوى الكشف عن وجود الياغورت في الخزان. ta - 	KEv: ملامس كهرومغناطيسي ~24V T ₂ : مؤجلة	- كهروصىمام Ev .	الملء
- C ₃₀ ، C ₃₁ تماسات نهاية الشوط .	$^-$ موزع $4/2$ ثنائي الاستقرار ${ m dC_3}^+$ نحكم هوائي. ${ m dC_3}^-$ نحكم هوائي.	– رافعة 3 أذات فعل مزدوج.	القطع


2- شبكة التغذية : 220/380V , 50 Hz .

3- تركيب المؤجلة T2



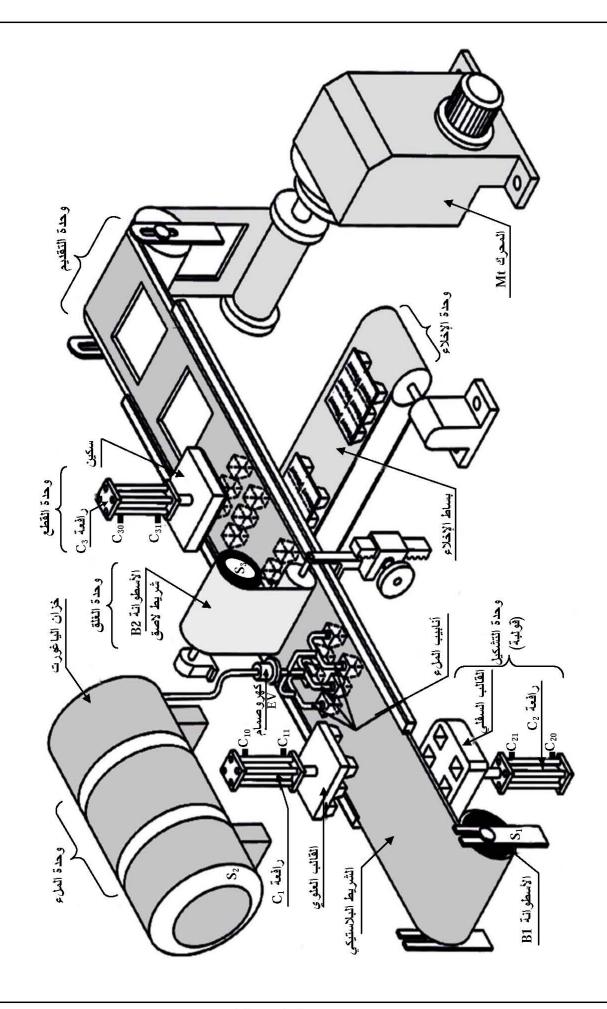
4- دارة ضبط درجة حرارة القالب السفلى: كل المضخمات العملية مثالية

- الشكل 3-

5- دارة توليد الإشارتين X و Y:

جدول الحقيقة لتوليد الإشارتين X و Y

\bigcap_{α}	On	Ο.	X	V	
Q_{C}	$Q_{\rm B}$	$Q_{\rm A}$	Λ	1	
0	0	0	0	0	
0	0	1	0	0	
0	1	0	0	0	
0	1	1	0	0	- الشكل 5 -
1	0	0	1	0	
1	0	1	1	0	
1	1	0	1	1	
1	1	1	1	1	


جدول الحقيقة

· · · · · · · · · · · · · · · · · · ·							
R		Out	puts	}			
$R_{0(1)}$	R ₀₍₂₎	$R_{9(1)}$	$R_{9(2)}$	Q_{D}	$Q_{\rm C}$	Q_{B}	Q _A
Н	Н	L	X	L	L	L	L
Н	Н	X	L	L	L	L	L
X	X	Н	Н	Н	L	L	Н
X	L	X	L		COI	JNT	
L	X	L	X	COUNT			
L	X	X	L	COUNT			
X	L	L	X		COI	JNT	

وثيقة الصانع للدارة المندمجة SN74LS90

التمثيل المبسط للدارة المندمجة

- الشكل 6 -

الأسئلة:

التحليل الزمني.

س 1- أوجد متمن من وجهة نظر جزء التحكم لأشغولة التشكيل.

س2- اكتب على شكل جدول معادلات التنشيط، التخميل والمخارج لأشغولة القطع (الصفحة 19/12).

F/GCI(100) و I/GPN(1,3,4) و I/GPN(1,3,4) و I/GPN(1,3,4) و I/GPN(1,3,4)

وظيفة المعالجة:

س4- لإحداث تأجيل قدره t₂=5s نستعمل الدارة الموضحة في الشكل2 (الصفحة 19/14). احسب قيمة سعة المكثفة للحصول على هذا التأجيل.

س5− أكمل رسم دارة المعقب الكهربائي لأشغولة التقديم مع إضافة دارة التغذية والمخارج على ورقة الإجابة 1 (الصفحة 19/18)

-6 أكمل رسم دارة المعقب الهوائي لأشغولة القطع على ورقة الإجابة 1 (الصفحة 19/18

س7 لتوليد الإشارتين X و Y نستعمل عداد لاتزامني الشكل 4 (الصفحة 19/15).

مستعينا بجدول الحقيقة الشكل 5 (الصفحة 19/15)

-7/ أوجد المعادلات المنطقية لـ X و Y مختزلة (مبسطة).

باستعمال وثيقة الصانع للدارة المنمذجة SN74LS90 الشكل6 (الصفحة 19/15)

س7-2/ أكمل رسم دارة هذا العداد والدارة التوافقية على ورقة الإجابة2 (الصفحة 19/19).

Y و X ما هو دور البوابة " لاو " في دارة توليد الإشارتين X و X

(19/14 حرارة القالب السفلي: الشكل 3 منحة (19/14 حرارة حرارة القالب السفلي: الشكل 3 منحة (19/14

 $^{
m V}$ أوجد قيمة التوتر $^{
m V}$

. $V_1 = V$ مع العلم أن V_2 بدلالة $V_1 = V$ مع العلم أن $V_2 = V$

 θ =100°C من أجل V_2 ثم R_T قيمة أوجد قيمة /3-8

4-8 أكمل جدول تشغيل دارة ضبط درجة الحرارة المبين على ورقة الإجابة 2 (الصفحة 4-8

نظام ثلاثي الطور:

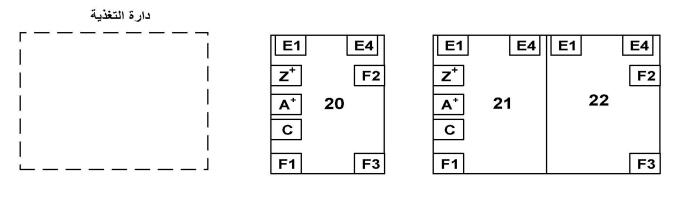
س9- فسر المقادير الكهربائية لشبكة التغذية ثلاثية الطور 50 Hz ; 220/380V .

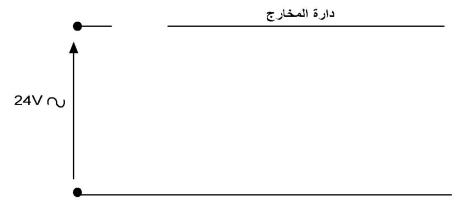
وظيفة الاستطاعة:

-10 سوحة الاستعلامات للمحرك Mt تحمل الخصائص التالية:

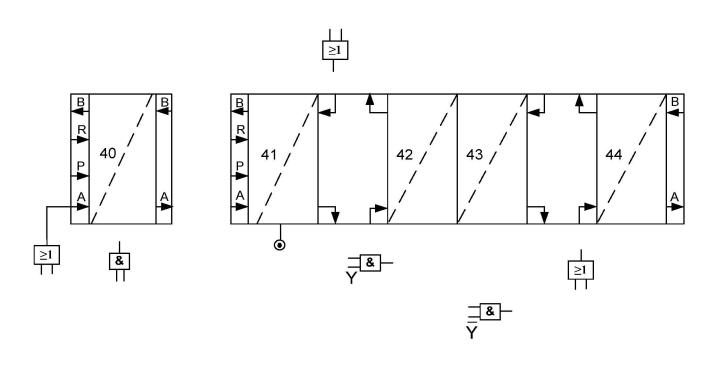
220/380V , 50~Hz , 960tr/min , 1,5 KW , 3,5A , $cos\phi = 0.84$

(19/19) أكمل شكل دارة الاستطاعة على ورقة الإجابة (19/19)

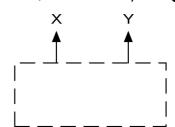

2-10 احسب الانزلاق و عدد الأقطاب

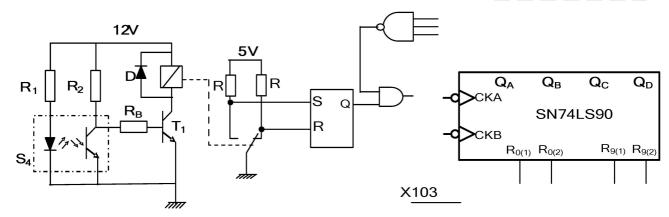

10-3/ احسب الاستطاعة الممتصة، الارتكاسية (المفاعلة).

4-10 لحسب المردود والعزم المفيد.


ورقة الإجابة 1

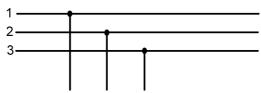
ج 5- دارة المعقب الكهربائي:

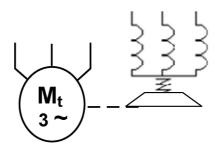



ج 6- دارة المعقب الهوائي لأشغولة القطع

ورقة الإجابة 2

X دارة توليد الإشارتين X وX





ج8-4/ جدول تشغیل دارة ضبط درجة حرارة

	$ m V_4$ قيمة التوتر	$ m V_{5}$ قيمة التوتر	حالة Q	حالة المقحل T
V2 < V3				
V2 > V3				

-10 دارة الاستطاعة للمحرك -10

